Effect of a DC Stray Current on the Corrosion of X80 Pipeline Steel and the Cathodic Disbondment Behavior of the Protective 3PE Coating in 3.5% NaCl Solution
Abstract
:1. Introduction
2. Experimental
2.1. Experimental Materials
2.2. Electrochemical Test
2.3. Analysis of Pitting Corrosion Morphology
2.4. Analysis of Cathodic Disbondment Area
3. Results and Discussion
3.1. Potential Values of the 3PE-Coated X80 Steel in the 3.5% NaCl Solution under Various DC Current Densities
3.2. Polarization of 3PE-Coated X80 Steel Samples at Different DC Currents
3.3. Corrosion Morphology and Pitting Corrosion Depth at Different DC Anode Currents
3.4. Cathodic Disbondment of the 3PE Coating from the X80 Steel at Various DC Cathode Currents
3.5. Corrosion and Cathodic Disbondment Mechanism of the Pipeline under the Action of the DC Stray Current
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Chen, Z.; Qin, C.; Tang, J.; Zhou, Y. Experiment research of dynamic stray current interference on buried gas pipeline from urban rail transit. J. Nat. Gas Sci. Eng. 2013, 15, 76–81. [Google Scholar] [CrossRef]
- Cole, I.S.; Marney, D. The science of pipe corrosion: A review of the literature on the corrosion of ferrous metals in soils. Corros. Sci. 2012, 56, 5–16. [Google Scholar] [CrossRef]
- Bertolini, L.; Carsana, M.; Pedeferri, P. Corrosion behaviour of steel in concrete in the presence of stray current. Corros. Sci. 2007, 49, 1056–1068. [Google Scholar] [CrossRef]
- Gummow, R.A.; Wakelin, R.G.; Segall, S.M. AC corrosion-A new challenge to pipeline integrity. Mater. Perform. 1998, 38, 24–31. [Google Scholar]
- Wen, C.; Li, J.; Wang, S.; Yang, Y. Experimental study on stray current corrosion of coated pipeline steel. J. Nat. Gas Sci. Eng. 2015, 27, 1555–1561. [Google Scholar] [CrossRef]
- Solgaard, A.O.S.; Carsana, M.; Geiker, M.R.; Küter, A.; Bertolini, L. Experimental observations of stray current effects on steel fibres embedded in mortar. Corros. Sci. 2013, 74, 1–12. [Google Scholar] [CrossRef]
- Berziou, C.; Remy, K.; Billard, A.; Creus, J. Corrosion behaviour of dc magnetron sputtered Fe1−xMgx alloy films in 3 wt % NaCl solution. Corros. Sci. 2007, 49, 4276–4295. [Google Scholar] [CrossRef]
- Cui, G.; Li, Z.; Yang, C.; Wei, X. Study on the interference corrosion of cathodic protection system. Corros. Rev. 2015, 33, 233–247. [Google Scholar] [CrossRef]
- Cheng, S.; Zhang, L.; Yang, A. Influence of subway stray current corrosion on buried metal pipeline. Gas Heat 2003, 23, 435–437. [Google Scholar]
- Zhu, Q.; Cao, A.; Wang, Z.; Song, J.; Shengli, C. Stray current corrosion in buried pipeline. Anti-Corros. Methods Mater. 2011, 58, 234–237. [Google Scholar] [CrossRef]
- Shi, Z.; Liu, M.; Atrens, A. Measurement of the corrosion rate of magnesium alloys using Tafel extrapolation. Corros. Sci. 2010, 52, 579–588. [Google Scholar] [CrossRef]
- Song, Y.W.; Wang, X.H.; Ren-Yang, H.E.; He, C.F.; Wang, X.Y. Status in research on stray-current corrosion of buried steel pipelines. Corros. Prot. 2009, 8, 003. [Google Scholar]
- Zaboli, A.; Vahidi, B.; Yousefi, S.; Hosseini-Biyouki, M.M. Evaluation and control of stray current in DC-electrified railway systems. IEEE Trans. Veh. Technol. 2017, 66, 974–980. [Google Scholar] [CrossRef]
- Goidanich, S.; Lazzari, L.; Ormellese, M. AC corrosion—Part 1: Effects on overpotentials of anodic and cathodic processes. Corros. Sci. 2010, 52, 491–497. [Google Scholar] [CrossRef]
- Xiao, Y.; Du, Y.; Ou, L.; Sun, H. Influence of environment and coating defects on AC corrosion of pipeline steel. Corros. Sci. Prot. Technol. 2017, 29, 645–650. [Google Scholar]
- Martinez, S.; Žulj, L.V.; Kapor, F. Disbonding of underwater-cured epoxy coating caused by cathodic protection current. Corros. Sci. 2009, 51, 2253–2258. [Google Scholar] [CrossRef]
- Mahdavian, M.; Naderi, R.; Peighambari, M.; Hamdipour, M.; Haddadi, S.A. Evaluation of cathodic disbondment of epoxy coating containing azole compounds. J. Ind. Eng. Chem. 2014, 21, 1167–1173. [Google Scholar] [CrossRef]
- Pedeferri, P. Cathodic protection and cathodic prevention. Construct. Build. Mater. 1996, 10, 391–402. [Google Scholar] [CrossRef]
- Nielsen, L.; Galsgaard, F. Sensor technology for on-line monitoring of AC induced corrosion along pipelines. In Proceedings of the Corrosion 2005, Houston, TX, USA, 3–7 April 2005. [Google Scholar]
- Ormellese, M.; Goidanich, S.; Lazzari, L. Effect of AC interference on cathodic protection monitoring. Corros. Eng. Sci. Technol. 2011, 46, 618–623. [Google Scholar] [CrossRef]
- Yang, C.; Cui, G.; Zi-Li, L.I.; Cheng-Bin, Z.; Ya-Lei, Z. Effects of direct stray current on surface morphology and electrochemical behavior of X65 steel. Mater. Prot. 2016, 49, 18–22. (In Chinese) [Google Scholar]
- Qian, S.; Cheng, Y.F. Accelerated corrosion of pipeline steel and reduced cathodic protection effectiveness under direct current interference. Constr. Build. Mater. 2017, 148, 675–685. [Google Scholar] [CrossRef]
- Walter, G.W.; Madurasinghe, M.A.D. Corrosion rates from low polarization data calculated by a galvanostatic, non-linear curve fitting method. Corros. Sci. 1989, 29, 1039–1055. [Google Scholar] [CrossRef]
- Bellezze, T.; Giuliani, G.; Roventi, G. Study of stainless steels corrosion in a strong acid mixture. Part 1: Cyclic potentiodynamic polarization curves examined by means of an analytical method. Corros. Sci. 2017, 130, 113–125. [Google Scholar] [CrossRef]
- Mansfeld, F. Tafel slopes and corrosion rates obtained in the pre-Tafel region of polarization curves. Corros. Sci. 2005, 47, 3178–3186. [Google Scholar] [CrossRef]
- Bellezze, T.; Giuliani, G.; Viceré, A.; Roventi, G. Study of stainless steels corrosion in a strong acid mixture. Part 2: Anodic selective dissolution, weight loss and electrochemical impedance spectroscopy tests. Corros. Sci. 2017, 130, 12–21. [Google Scholar] [CrossRef]
- Bertocci, U. AC induced corrosion. The effect of an alternating voltage on electrodes under charge-transfer control. Med. Sci. Sports Exerc. 2000, 32, 1281–1287. [Google Scholar] [CrossRef]
- Guo, Y.; Tan, H.; Meng, T.; Wang, D.; Liu, S. Effects of alternating current interference on the cathodic protection for API 5L X60 pipeline steel. J. Nat. Gas Sci. Eng. 2016, 36, 414–423. [Google Scholar] [CrossRef]
- Wang, Y.; Yan, Y.G.; Dong, C.F.; Qian, J.; Li, X. Effect of stray current on corrosion of Q235, 16 Mn and X70 steels with damaged coating. Corros. Sci. Prot. Technol. 2010, 22, 117–119. [Google Scholar]
- Chen, X.; Liu, H.; Chen, Z.; Wu, C.; Chen, H.; Wang, W.; Liu, L. ICPTT 2012-Simulation evaluation of dc interference current corrosion based on outflowing current density in different soil. In Proceedings of the American Society of Civil Engineers International Conference on Pipelines and Trenchless Technology, Wuhan, China, 19–22 October 2012; pp. 101–112. [Google Scholar]
- Wang, X.; Xu, C.; Chen, Y.; Tu, C.; Wang, Z.; Song, X. Effects of stray AC on corrosion of 3-layer polyethylene coated X70 pipeline steel and cathodic disbondment of coating with defects in 3.5 wt-% NaCl solution. Corros. Eng. Sci. Technol. 2018, 53, 214–225. [Google Scholar] [CrossRef]
- Fu, A.Q.; Cheng, Y.F. Effect of alternating current on corrosion and effectiveness of cathodic protection of pipelines. Can. Metall. Q. 2012, 51, 81–90. [Google Scholar] [CrossRef]
- Chen, Y. Electrochemical impedance spectroscopy study for cathodic disbondment test technology on three layer polyethylene anticorrosive coating under full immersion and alternating dry–wet environments. Int. J. Electrochem. Sci. 2016, 11, 10884–10894. [Google Scholar] [CrossRef]
- Cao, A.L. Research on Stray Current Corrosion Protection of Buried Metal Pipelines. Ph.D. Thesis, Chongqing University, Chongqing, China, 2010. (In Chinese). [Google Scholar]
- Qian, S.; Cheng, Y.F. Degradation of fusion bonded epoxy pipeline coatings in the presence of direct current interference. Prog. Org. Coat. 2018, 120, 79–87. [Google Scholar] [CrossRef]
- Mahdavi, F.; Tan, M.J.; Forsyth, M. Electrochemical impedance spectroscopy as a tool to measure cathodic disbondment on coated steel surfaces: Capabilities and limitations. Prog. Org. Coat. 2015, 88, 23–31. [Google Scholar] [CrossRef]
i (A/m2) | Ecorr (mV) | icorr (μA/cm2) | ba | bc | |ba/bc| |
---|---|---|---|---|---|
0 | −859.03 | 36.38 | 69.75 | −150.46 | 0.46 |
20 | −546.53 | 393.18 | 86.77 | −61.12 | 1.42 |
40 | −510.55 | 441.99 | 71.73 | −63.51 | 1.13 |
60 | −470.81 | 478.10 | 94.24 | −85.36 | 1.11 |
80 | −453.57 | 708.91 | 88.89 | −75.10 | 1.12 |
100 | −435.26 | 843.20 | 113.56 | −103.06 | 1.10 |
i (A/m2) | Ecorr (mV) | icorr (μA/cm2) | ba | bc | |ba/bc| |
---|---|---|---|---|---|
0 | −858.03 | 36.37 | 69.75 | −150.46 | 0.46 |
20 | −1247.9 | 213.57 | 57.71 | −68.02 | 0.84 |
40 | −1256.7 | 381.98 | 53.58 | −86.10 | 0.62 |
60 | −1324.1 | 612.06 | 50.01 | −122.92 | 0.41 |
80 | −1357.3 | 875.98 | 53.88 | −159.25 | 0.34 |
100 | −1352.0 | 982.97 | 58.59 | −186.56 | 0.31 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Wang, Z.; Chen, Y.; Song, X.; Yang, Y. Effect of a DC Stray Current on the Corrosion of X80 Pipeline Steel and the Cathodic Disbondment Behavior of the Protective 3PE Coating in 3.5% NaCl Solution. Coatings 2019, 9, 29. https://doi.org/10.3390/coatings9010029
Wang X, Wang Z, Chen Y, Song X, Yang Y. Effect of a DC Stray Current on the Corrosion of X80 Pipeline Steel and the Cathodic Disbondment Behavior of the Protective 3PE Coating in 3.5% NaCl Solution. Coatings. 2019; 9(1):29. https://doi.org/10.3390/coatings9010029
Chicago/Turabian StyleWang, Xinhua, Zuquan Wang, Yingchun Chen, Xuting Song, and Yong Yang. 2019. "Effect of a DC Stray Current on the Corrosion of X80 Pipeline Steel and the Cathodic Disbondment Behavior of the Protective 3PE Coating in 3.5% NaCl Solution" Coatings 9, no. 1: 29. https://doi.org/10.3390/coatings9010029
APA StyleWang, X., Wang, Z., Chen, Y., Song, X., & Yang, Y. (2019). Effect of a DC Stray Current on the Corrosion of X80 Pipeline Steel and the Cathodic Disbondment Behavior of the Protective 3PE Coating in 3.5% NaCl Solution. Coatings, 9(1), 29. https://doi.org/10.3390/coatings9010029