Synthesis of Core-Shell MgO Alloy Nanoparticles for Steelmaking
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Characterization
2.3. Preparation of AlTi-MgO@PDA nanoparticles (NPs)
2.4. Preparation of AlTi-MgO@C NPs
3. Results
3.1. NP Characteristics
3.2. Surface Treatment and Physical Properties of the NPs in Steel
4. Conclusions
- The AlTi-MgO alloy NPs were selected as the pre-dispersed medium in this study, with the average AlTi-MgO NPs size being 50 nm after pre-dispersion. A new type of core-shell structure that was comprised of AlTi-MgO@C NPs was successfully synthesized by dopamine self-polymerization under alkaline conditions and a high-temperature carbonization process, which can be used for steelmaking.
- After the surface treatment, the size and composition of the NPs exhibited good dispersion of the NPs in the aqueous solution, with the width of the shell layer being about 10 nm. After immersion in hot HCl acid for several hours, the NP coating contained only amorphous and graphitic carbon, which was confirmed by XRD pattern analysis and the high-resolution TEM images of the surface-treated NPs. These results confirmed the presence of a carbon layer on the surface of the treated NPs.
- Due to the different compositions of the NP coatings, the theoretical results show that after the surface treatment, the AlTi-MgO NPs have a smaller contact angle in the high-temperature liquid steel compared to the original AlTi-MgO NPs coated with PDA, indicating the superior wettability of the AlTi-MgO@C NPs. Furthermore, this suggests that surface treatment will greatly increase the NP utilization ratio.
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Gelde, L.; Cuevas, A.L.; Martínez de Yuso, M.V.; Benavente, J.; Vega, V.; González, A.S.; Prida, V.M.; Hernando, B. Influence of TiO2-coating layer on nanoporous alumina membranes by ALD technique. Coatings 2018, 8, 60. [Google Scholar] [CrossRef]
- Vázquez Martínez, J.M.; Salguero Gómez, J.; Batista Ponce, M.; Botana Pedemonte, F.J. Effects of laser processing parameters on texturized layer development and surface features of Ti6Al4V alloy samples. Coatings 2017, 8, 6. [Google Scholar] [CrossRef]
- Murugan, P.; Krishnamurthy, M.; Jaisankar, S.N.; Samanta, D.; Baran Mandal, A. Controlled decoration of the surface with macromolecules: Polymerization on a self-assembled monolayer (SAM). Chem. Soc. Rev. 2015, 44, 3212–3243. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.H.; Zhu, L.P.; Zhu, L.J.; Zhu, B.K.; Xu, Y.Y. Surface characteristics of a self-polymerized dopamine coating deposited on hydrophobic polymer films. Langmuir 2011, 27, 14180–14187. [Google Scholar] [CrossRef] [PubMed]
- Wei, Q.; Zhang, F.L.; Li, J.; Li, B.J.; Zhao, C.S. Oxidant-induced dopamine polymerization for multifunctional coatings. Polym. Chem. 2010, 1, 1430–1433. [Google Scholar] [CrossRef]
- Ball, V.; Del Frari, D.; Michel, M.; Buehler, M.J.; Toniazzo, V.; Singh, M.K.; Gracio, J.; Ruch, D. Deposition mechanism and properties of thin polydopamine films for high added value applications in surface science at the nanoscale. BioNanoScience 2012, 2, 16–34. [Google Scholar] [CrossRef]
- Wang, S.B.; Min, Y.L.; Yu, S.H. Synthesis and magnetic properties of uniform hematite nanocubes. J. Phys. Chem. C 2007, 111, 3551–3554. [Google Scholar] [CrossRef]
- Yu, X.L.; Deng, J.J.; Zhan, C.Z.; Lv, R.; Huang, Z.H.; Kang, F.Y. A high-power lithium-ion hybrid electrochemical capacitor based on citrate-derived electrodes. Electrochim. Acta 2017, 228, 76–81. [Google Scholar] [CrossRef]
- Lei, C.; Han, F.; Li, D.; Li, W.C.; Sun, Q.; Zhang, X.Q.; Lu, A.H. Dopamine as the coating agent and carbon precursor for the fabrication of N-doped carbon coated Fe3O4 composites as superior lithium ion anodes. Nanoscale 2013, 5, 1168–1175. [Google Scholar] [CrossRef] [PubMed]
- Yue, Q.; Wang, M.H.; Sun, Z.K.; Wang, C.; Wang, C.; Deng, Y.H.; Zhao, D.Y. A versatile ethanol-mediated polymerization of dopamine for efficient surface modification and the construction of functional core-shell nanostructures. J. Mater. Chem. B 2013, 1, 6085–6093. [Google Scholar] [CrossRef]
- Liu, Y.L.; Ai, K.L.; Lu, L.H. Polydopamine and its derivative materials: Synthesis and promising applications in energy, environmental, and biomedical fields. Chem. Rev. 2014, 114, 5057–5115. [Google Scholar] [CrossRef] [PubMed]
- Kasemset, S.; Lee, A.; Miller, D.J.; Freeman, B.D.; Sharma, M.M. Effect of polydopamine deposition conditions on fouling resistance, physical properties, and permeation properties of reverse osmosis membranes in oil/water separation. J. Membr. Sci. 2013, 425, 208–216. [Google Scholar] [CrossRef]
- Lee, H.; Dellatore, S.M.; Miller, W.M.; Messersmith, P.B. Mussel-inspired surface chemistry for multifunctional coatings. Science 2007, 31, 426–430. [Google Scholar] [CrossRef] [PubMed]
- Kang, S.M.; You, I.; Cho, W.K.; Shon, H.K.; Lee, T.G.; Choi, I.S.; Karp, J.M.; Lee, H. One-step modification of superhydrophobic surfaces by a mussel-inspired polymer coating. Angew. Chem. Int. Ed. 2010, 49, 9401–9404. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Mahurin, S.M.; Li, C.; Unocic, R.R.; Idrobo, J.C.; Gao, H.J.; Pennycook, S.J.; Dai, S. Dopamine as a carbon source: The controlled synthesis of hollow carbon spheres and yolk-structured carbon nanocomposites. Angew. Chem. Int. Ed. 2011, 50, 6799–6802. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.Z.; Yang, S.F.; Li, J.S.; Yang, Y.D.; Chattopadhyay, K. Inclusion characteristics and microstructure properties under different cooling conditions in steel with nanoparticles addition. Ironmak. Steelmak. 2017, 1–7. [Google Scholar] [CrossRef]
- Zener, C. Private Communication to CS Smith. Trans. Am. Inst. Metall. Eng. 1949, 175, 15–17. [Google Scholar]
- Gao, X.Z.; Yang, S.F.; Li, J.S.; Liao, H.; Gao, W.; Wu, T. Addition of MgO nanoparticles to carbon structural steel and the effect on inclusion characteristics and microstructure. Metall. Mater. Trans. B 2016, 47, 1124–1136. [Google Scholar] [CrossRef]
- Gao, X.Z.; Yang, S.F.; Li, J.S.; Yang, Y.D.; Chattopadhyay, K.; Mclean, A. Effects of MgO nanoparticle additions on the structure and mechanical properties of continuously cast steel billets. Metall. Mater. Trans. A 2016, 47, 461–470. [Google Scholar] [CrossRef]
- Gao, X.Z.; Yang, S.F.; Li, J.S.; Ma, A.; Chattopadhyay, K. Improvement of utilization ratio of nanoparticles in steel and its influence on acicular ferrite formation. Steel Res. Int. 2017, 88. [Google Scholar] [CrossRef]
- Gong, W.; Chen, W.S.; He, J.P.; Tong, Y.; Liu, C.; Su, L.; Gao, B.; Yang, H.K.; Zhang, Y.; Zhang, X.J. Substrate-independent and large-area synthesis of carbon nanotube thin films using ZnO nanorods as template and dopamine as carbon precursor. Carbon 2015, 83, 275–281. [Google Scholar] [CrossRef]
- Liang, Y.R.; Liu, H.; Li, Z.H.; Fu, R.W.; Wu, D.C. In situ polydopamine coating-directed synthesis of nitrogen-doped ordered nanoporous carbons with superior performance in supercapacitors. J. Mater. Chem. A 2013, 1, 15207–15211. [Google Scholar] [CrossRef]
- Kong, J.H.; Yee, W.A.; Wei, Y.F.; Yang, L.P.; Anq, J.M.; Phua, S.L.; Wong, S.Y.; Zhou, R.; Dong, Y.L.; Li, X.; et al. Silicon nanoparticles encapsulated in hollow graphitized carbon nanofibers for lithium ion battery anodes. Nanoscale 2013, 5, 2967–2973. [Google Scholar] [CrossRef] [PubMed]
- Mu, W.Z.; Mao, H.H.; Jönsson, P.G.; Nakajima, K.J. Effect of carbon content on the potency of the intragranular ferrite formation. Steel Res. Int. 2016, 87, 311–319. [Google Scholar] [CrossRef]
- Wang, G.C.; Wang, T.M.; Li, S.N.; Fang, K.M. Study on the process of adding Al2O3 nano-powder to molten pure iron. Chin. J. Eng. 2007, 29, 578–581. (In Chinese) [Google Scholar]
- Zhao, L.Y.; Sahajwalla, V. Interfacial phenomena during wetting of graphite/alumina mixtures by liquid iron. ISIJ Int. 2003, 43, 1–6. [Google Scholar] [CrossRef]
- Humenik, M.; Kingery, W.D. Metal-ceramic interactions: III, surface tension and wettability of metal-ceramic systems. J. Am. Ceram. Soc. 1954, 37, 18–23. [Google Scholar] [CrossRef]
- Kostikov, V.I.; Maurakh, M.A.; Nozhkina, A.V. Wetting of diamond and graphite by liquid iron-titanium alloys. Powder Metall. Met. Ceram. 1971, 10, 62–64. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qu, J.; Yang, S.; Guo, H.; Li, J.; Wang, T. Synthesis of Core-Shell MgO Alloy Nanoparticles for Steelmaking. Coatings 2018, 8, 161. https://doi.org/10.3390/coatings8050161
Qu J, Yang S, Guo H, Li J, Wang T. Synthesis of Core-Shell MgO Alloy Nanoparticles for Steelmaking. Coatings. 2018; 8(5):161. https://doi.org/10.3390/coatings8050161
Chicago/Turabian StyleQu, Jinglong, Shufeng Yang, Hao Guo, Jingshe Li, and Tiantian Wang. 2018. "Synthesis of Core-Shell MgO Alloy Nanoparticles for Steelmaking" Coatings 8, no. 5: 161. https://doi.org/10.3390/coatings8050161
APA StyleQu, J., Yang, S., Guo, H., Li, J., & Wang, T. (2018). Synthesis of Core-Shell MgO Alloy Nanoparticles for Steelmaking. Coatings, 8(5), 161. https://doi.org/10.3390/coatings8050161