Performances and Coating Morphology of a Siloxane-Based Hydrophobic Product Applied in Different Concentrations on a Highly Porous Stone
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Treatments
2.3. Techniques and Methods of Analysis
2.3.1. Preliminary Tests: Static Contact Angle and Colour Measurements
2.3.2. ESEM-EDS Analyses
2.3.3. Water Vapour Permeability Test
2.3.4. Capillary Water Absorption Test
2.3.5. “Contact Sponge” Test
3. Results and Discussion
3.1. Preliminary Tests: Colour Variations and Superficial Hydrophobicity
3.2. Morphological Characteristics and Elemental Microanalysis of the Coatings
3.3. Water Vapour Transport Properties
3.4. Water Absorption
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Amoroso, G.G.; Fassina, V. Stone Decay and Conservation; Elsevier: Amsterdam, The Netherlands, 1983. [Google Scholar]
- Charola, A.E. Salts in the deterioration of porous materials: An overview. J. Am. Inst Conserv. 2000, 39, 327–343. [Google Scholar] [CrossRef]
- Horie, C.V. Materials for Conservation: Organic Consolidants, Adhesives and Coatings, 2nd ed.Butterworth-Heinemann: London, UK, 2010. [Google Scholar]
- Doehne, E.; Price, C.A. Stone Conservation: An Overview of Current Research, 2nd ed.; Getty Conservation Institute: Los Angeles, CA, USA, 2010. [Google Scholar]
- Sadat-Shojai, M.; Ershad-Langroudi, A. Polymeric coatings for protection of historic monuments: Opportunities and challenges. J. Appl. Polym. Sci. 2009, 112, 2535–2551. [Google Scholar] [CrossRef]
- Wheeler, G. Alkoxysilanes and the Consolidation of Stone; Getty Conservation Institute: Los Angeles, CA, USA, 2005; Available online: http://hdl.handle.net/10020/gci_pubs/consolidation_of_stone (accessed on 15 September 2016).
- Maravelaki-Kalaitzaki, P.; Kallithrakas-Kontos, N.; Agioutantis, Z.; Maurigiannakis, S.; Korakaki, D. A comparative study of porous limestones treated with silicon-based strengthening agents. Prog. Org. Coat. 2008, 62, 49–60. [Google Scholar] [CrossRef]
- Zielecka, M.; Bujnowska, E. Silicone-containing polymer matrices as protective coatings: Properties and applications. Prog. Org. Coat. 2006, 55, 160–167. [Google Scholar] [CrossRef]
- Simionescu, B.; Olaru, M.; Aflori, M.; Doroftei, F. Siloxane-based polymers as protective coatings against SO2 dry deposition. High Perform. Polym. 2011, 23, 326–334. [Google Scholar] [CrossRef]
- Esposito, C.C.; Striani, R.; Frigione, M. UV-cured siloxane-modified methacrylic system containing hydroxyapatite as potential protective coating for carbonate stones. Prog. Org. Coat. 2013, 76, 1236–1242. [Google Scholar] [CrossRef]
- Manoudis, P.N.; Karapanagiotis, I.; Tsakalof, A.; Zuburtikudis, I.; Panayiotou, C. Superhydrophobic composite films produced on various substrates. Langmuir 2008, 24, 11225–11232. [Google Scholar] [CrossRef] [PubMed]
- De Ferri, L.; Lottici, P.P.; Lorenzi, A.; Montenero, A.; Salvioli-Mariani, E. Study of silica nanoparticles—Polysiloxane hydrophobic treatments for stone-based monument protection. J. Cult Herit. 2011, 12, 356–363. [Google Scholar] [CrossRef]
- Facio, D.S.; Mosquera, M.J. Simple strategy for producing superhydrophobic nanocomposite coatings in situ on a building substrate. ACS Appl. Mater. Interfaces 2013, 5, 7517–7526. [Google Scholar] [CrossRef] [PubMed]
- Lampakis, D.; Manoudis, P.N.; Karapanagiotis, I. Monitoring the polymerization process of Si-based superhydrophobic coatings using Raman spectroscopy. Prog. Org. Coat. 2013, 76, 488–494. [Google Scholar] [CrossRef]
- Pino, F.; Fermo, P.; La Russa, M.; Ruffolo, S.; Comite, V.; Baghdachi, J.; Pecchioni, E.; Fratini, F.; Cappelletti, G. Advanced mortar coatings for cultural heritage protection. Durability towards prolonged UV and outdoor exposure. Environ. Sci. Pollut. Res. 2016. [Google Scholar] [CrossRef] [PubMed]
- Varas, M.J.; Alvarez de Buergo, M.; Fort, R. The Influence of Past Protective Treatments on the Deterioration of Historic Stone Façades A Case Study. Stud. Conserv. 2007, 52, 110–124. [Google Scholar] [CrossRef]
- Calia, A.; Lettieri, M.; Quarta, G.; Laurenzi Tabasso, M.; Mecchi, A.M. Documentation and Assessment of the Most Important Conservation Treatments Carried out on Lecce Stone Monuments in the Last Two Decades. In Proceedings of the 10th International Congress on Deterioration and Conservation of Stone, Stockholm, Sweden, 27 June–2 July 2004; pp. 431–438.
- Nwaubani, S.O.; Dumbelton, J. A practical approach to in-situ evaluation of surface-treated structures. Constr. Build. Mater. 2001, 15, 199–212. [Google Scholar] [CrossRef]
- Pinna, D.; Salvadori, B.; Galeotti, M. Monitoring the performance of innovative and traditional biocides mixed with consolidants and water-repellents for the prevention of biological growth on stone. Sci. Total Environ. 2012, 423, 132–141. [Google Scholar] [CrossRef] [PubMed]
- Perez, E.N.; Alvarez de Buergo, M.; Bustamante, R. Effects of conservation interventions on the archaeological Roman site of Merida (Spain). Advance of research. Procedia Chem. 2013, 8, 269–278. [Google Scholar]
- Alvarez de Buergo Ballester, M.; Fort González, R. Basic methodology for the assessment and selection of water-repellent treatments applied on carbonatic materials. Prog. Org. Coat. 2001, 43, 258–266. [Google Scholar] [CrossRef]
- Alvarez de Buergo Ballester, M.; Fort González, R.; Gomez-Heras, M. Contributions of scanning electron microscopy to the assessment of the effectiveness of stone conservation treatments. Scanning 2004, 26, 41–47. [Google Scholar]
- Calia, A.; Mecchi, A.M.; Luprano, V.A.M.; Rubino, G.; Rota, P. Microseismic tests in the analysis and characterization of high porosity stone materials. In Proceedings of the 6th International Conference on Non-Destructive Testing and Microanalysis for the Diagnostics and Conservation of the Cultural and Environmental Heritage, Rome, Italy, 17–20 May 1999; pp. 147–162.
- Bugani, S.; Camaiti, M.; Morselli, L.; Van de Casteele, E.; Janssens, K. Investigating morphological changes in treated vs. untreated stone building materials by X-ray micro-CT. Anal. Bioanal. Chem. 2008, 391, 1343–1350. [Google Scholar] [CrossRef] [PubMed]
- Calia, A.; Lettieri, M.; Matera, L.; Sileo, M. The assessment of protection treatments on highly porous stones with relation to the sustainability of the interventions on the historical built heritage. In Proceedings of La Conservazione del Patrimonio Architettonico All’aperto: Superfici, Strutture, Finiture e Contesti; Biscontin, G., Driussi, G., Eds.; Edizioni Arcadia Ricerche: Marghera-Venezia, Italy, 2012; pp. 477–487. (In Italian) [Google Scholar]
- Licciulli, A.; Calia, A.; Lettieri, M.; Diso, D.; Masieri, M.; Franza, S.; Amadelli, R.; Casarano, G. Photocatalytic TiO2 coatings on limestone. J. Sol-Gel Sci. Technol. 2011, 60, 437–444. [Google Scholar] [CrossRef]
- Licchelli, M.; Malagodi, M.; Weththimuni, M.L.; Zanchi, C. Water-repellent properties of fluoroelastomers on a very porous stone: Effect of the application procedure. Prog. Org. Coat. 2013, 76, 495–503. [Google Scholar] [CrossRef]
- Lettieri, M.; Calia, A.; Licciulli, A.; Marquardt, A.E.; Phaneuf, R.J. Nanostructured TiO2 for stone coating: Assessing compatibility with basic stone’s properties and photocatalytic effectiveness. Bull. Eng. Geol. Environ. 2015. [Google Scholar] [CrossRef]
- UNI 10921 Beni Culturali—Materiali Lapidei Naturali ed Artificiali—Prodotti Idrorepellenti—Applicazione su Provini e Determinazione in Laboratorio delle Loro Caratteristiche; Ente Italiano di Normazione: Milan, Italy, 2001. (In Italian)
- EN 15886 Conservation of Cultural Property—Test Methods—Colour Measurement of Surfaces; CEN (European Committee for Standardization): Brussels, Belgium, 2010.
- EN 15802 Conservation of Cultural Property—Test Methods—Determination of Static Contact Angle; CEN (European Committee for Standardization): Brussels, Belgium, 2010.
- Lettieri, M.; Masieri, M. Surface characterization and effectiveness evaluation of anti-graffiti coatings on highly porous stone materials. Appl. Surf. Sci. 2014, 288, 466–477. [Google Scholar] [CrossRef]
- NORMAL Rec. 21/85 Permeabilità al Vapor D’acqua; CNR/ICR: Rome, Italy, 1985. (In Italian)
- Karapanagiotis, I.; Pavlou, A.; Manoudis, P.N.; Aifantis, K.E. Water repellent ORMOSIL films for the protection of stone and other materials. Mater. Lett. 2014, 131, 276–279. [Google Scholar] [CrossRef]
- EN 15801 Conservation of Cultural Property—Test Methods—Determination of Water Absorption by Capillarity; CEN (European Committee for Standardization): Brussels, Belgium, 2009.
- UNI 11432 Cultural Heritage—Natural and Artificial Stone—Determination of the Water Absorption by Contact Sponge; Ente Italiano di Normazione: Milan, Italy, 2011.
- Vandevoorde, D.; Pamplona, M.; Schalm, O.; Vanhellemont, Y.; Cnudde, V.; Verhaeven, E. Contact sponge method: Performance of a promising tool for measuring the initial water absorption. J. Cult. Herit. 2009, 10, 41–47. [Google Scholar] [CrossRef]
- Maravelaki-Kalaitzaki, P.; Kallithrakas-Kontos, N.; Korakaki, D.; Agioutantis, Z.; Maurigiannakis, S. Evaluation of silicon-based strengthening agents on porous limestones. Prog. Org. Coat. 2006, 57, 140–148. [Google Scholar] [CrossRef]
- Aslanidou, D.; Karapanagiotis, I.; Panayiotou, C. Tuning the wetting properties of siloxane-nanoparticle coatings to induce superhydrophobicity and superoleophobicity for stone protection. Mater. Des. 2016, 108, 736–744. [Google Scholar] [CrossRef]
- Mosquera, M.J.; de los Santos, D.M.; Rivas, T.; Sanmartín, P.; Silva, B. New nanomaterials for protecting and consolidating stone. J. Nano Res. 2009, 8, 1–12. [Google Scholar] [CrossRef]
- Mosquera, M.; Pozo, J.; Esquivias, L. Stress during drying of two stone consolidants applied in monumental conservation. J. Sol-Gel Sci. Technol. 2003, 26, 1227–1231. [Google Scholar] [CrossRef]
- Tesser, E.; Antonelli, F.; Sperni, L.; Ganzerla, R.; Maravelaki, N.P. Study of the stability of siloxane stone strengthening agents. Polym. Degrad. Stab. 2014, 110, 232–240. [Google Scholar] [CrossRef]
- Salazar-Hernández, C.; Puy Alquiza, M.J.; Salgado, P.; Cervantes, J. TEOS–colloidal silica–PDMS-OH hybrid formulation used for stone consolidation. Adv. Organomet. Chem. 2010, 24, 481–488. [Google Scholar] [CrossRef]
- Zárraga, R.; Cervantes, J.; Salazar-Hernandez, C.; Wheeler, G. Effect of the addition of hydroxyl-terminated polydimethylsiloxane to TEOS-based stone consolidants. J. Cult. Herit. 2010, 11, 138–144. [Google Scholar] [CrossRef]
- Ksinopoulou, E.; Bakolas, A.; Moropoulou, A. Modifying Si-based consolidants through the addition of colloidal nano-particles. Appl. Phys. A 2016, 122. [Google Scholar] [CrossRef]
- Calia, A.; Lettieri, M.; Mecchi, A.M.; Quarta, G. The role of the petrophysical characteristics on the durability and conservation of some porous calcarenites from Southern Italy. In Sustainable Use of Traditional Geomaterials in Construction Practice; Prikryl, R., Torok, A., Gomez-Heras, M., Miskovsky, K., Theodoridou, M., Eds.; Geological Society: London, UK, 2015; Special Publications 416. [Google Scholar]
- Manoudis, P.N.; Karapanagiotis, I.; Tsakalof, A.; Zuburtikudis, I.; Kolinkeová, B.; Panayiotou, C. Superhydrophobic films for the protection of outdoor cultural heritage assets. Appl. Phys. A 2009, 97, 351–360. [Google Scholar] [CrossRef]
- Kapridaki, C.; Maravelaki-Kalaitzaki, P. TiO2–SiO2–PDMS nano-composite hydrophobic coating with self-cleaning properties for marble protection. Prog. Org. Coat. 2013, 76, 400–410. [Google Scholar] [CrossRef]
- Tsakalof, A.; Manoudis, P.; Karapanagiotis, I.; Chryssoulakis, I.; Panayiotou, C. Assessment of synthetic polymeric coatings for the protection and preservation of stone monuments. J. Cult. Herit. 2007, 8, 69–72. [Google Scholar] [CrossRef]
- Snethlage, R. Stone Conservation. In Stone in Architecture; Siegesmund, S., Snethlage, R., Eds.; Springer: Berlin, Heidelberg, Germnay, 2014; pp. 517–520. [Google Scholar]
- Kronlund, D.; Lindén, M.; Smått, J.H. A polydimethylsiloxane coating to minimize weathering effects on granite. Constr. Build. Mater. 2016, 125, 1051–1058. [Google Scholar] [CrossRef]
- Pinna, D.; Salvadori, B.; Porcinai, S. Evaluation of the application conditions of artificial protection treatments on salt-laden limestones and marble. Constr. Build. Mater. 2011, 25, 2723–2732. [Google Scholar] [CrossRef]
Samples | WR Concentration [w/w %] | Applied Solution [g] | Treated Surface [cm2 Per Specimen] |
---|---|---|---|
T2.5 | 2.5 | 2.5 | 25 |
T5 | 5 | 2.5 | 25 |
T10 | 10 | 2.5 | 25 |
T20 | 20 | 0.8 | 25 |
T40 | 40 | – | – |
Samples | ΔE*ab | c.a. [°] |
---|---|---|
Untreated | – | Not determinable |
T2.5 | 0.76 | 145 ± 2 |
T5 | 1.55 | 147 ± 3 |
T10 | 2.55 | 147 ± 2 |
T20 | 2.00 | 149 ± 2 |
Samples | G [(g/h)∙10−3] | WVTR [g/m2∙24 h] | RVP [%] |
---|---|---|---|
Untreated | 15.7 ± 1.1 | 238 ± 16 | – |
T2.5 | 13.5 ± 0.4 | 188 ± 7 | −14 |
T5 | 11.6 ± 1.2 | 168 ± 11 | −28 |
T10 | 11.3 ± 0.6 | 166 ± 9 | −34 |
Samples | Q24 h [kg/m2] | AC [(kg/m2∙s−1/2)∙10−2] |
---|---|---|
Untreated | 5.04 ± 0.04 | 9.34 ± 1.65 |
T2.5 | 0.54 ± 0.01 | 0.15 ± 0.01 |
T5 | 0.42 ± 0.06 | 0.13 ± 0.01 |
T10 | 0.67 ± 0.02 | 0.19 ± 0.05 |
Samples | WA [mg/cm2∙min] | |
---|---|---|
1 5 × 5 × 2 cm3 | 1 5 × 5 × 1 cm3 | |
Untreated | 117.38 ± 4.44 | 135.02 ± 5.58 |
T2.5 | 2.43 ± 0.32 | 2.50 ± 0.04 |
T5 | 1.81 ± 0.22 | 1.90 ± 0.20 |
T10 | 2.69 ± 0.28 | 2.86 ± 0.05 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lettieri, M.; Masieri, M. Performances and Coating Morphology of a Siloxane-Based Hydrophobic Product Applied in Different Concentrations on a Highly Porous Stone. Coatings 2016, 6, 60. https://doi.org/10.3390/coatings6040060
Lettieri M, Masieri M. Performances and Coating Morphology of a Siloxane-Based Hydrophobic Product Applied in Different Concentrations on a Highly Porous Stone. Coatings. 2016; 6(4):60. https://doi.org/10.3390/coatings6040060
Chicago/Turabian StyleLettieri, Mariateresa, and Maurizio Masieri. 2016. "Performances and Coating Morphology of a Siloxane-Based Hydrophobic Product Applied in Different Concentrations on a Highly Porous Stone" Coatings 6, no. 4: 60. https://doi.org/10.3390/coatings6040060
APA StyleLettieri, M., & Masieri, M. (2016). Performances and Coating Morphology of a Siloxane-Based Hydrophobic Product Applied in Different Concentrations on a Highly Porous Stone. Coatings, 6(4), 60. https://doi.org/10.3390/coatings6040060