Early-Stage Biofilm Prevention Enabled by Rapid Microwave Waveguide Detection of Planktonic Microorganisms in Diesel Fuel
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Flemming, H.C. Biofouling and Microbiologically Influenced Corrosion (MIC)—An Economic and Technical Overview; Heitz, E., Sand, W., Flemming, H.C., Eds.; Microbial Deterioration of Materials; Springer: Berlin, Germany; New York, NY, USA, 1996; pp. 5–14. [Google Scholar]
- Little, B.J.; Lee, J.S.; Ray, R.I. Diagnosing Microbiologically Influenced Corrosion: A State-of-the-Art Review. Corrosion 2006, 62, 1006–1017. [Google Scholar] [CrossRef]
- Starosvetsky, J.; Starosvetsky, D.; Armon, R. Identification of microbiologically influenced corrosion (MIC) in industrial equipment failures. Eng. Fail. Anal. 2007, 14, 1500–1511. [Google Scholar] [CrossRef]
- Little, B.J.; Lee, J.S. Microbiologically influenced corrosion: An update. Int. Mater. Rev. 2014, 59, 384–393. [Google Scholar] [CrossRef]
- Javaherdashti, R. Microbiologically Influenced Corrosion: An Engineering Insight; Springer International Publishing: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Vigneron, A.; Head, I.M.; Tsesmetzis, N. Damage to offshore production facilities by corrosive microbial biofilms. Appl. Microbiol. Biotechnol. 2018, 102, 2525–2533. [Google Scholar] [CrossRef] [PubMed]
- Jia, R.; Unsal, T.; Xu, D.; Lekbach, Y.; Gu, T. Microbiologically influenced corrosion and current mitigation strategies: A state of the art review. Int. Biodeterior. Biodegrad. 2019, 137, 42–58. [Google Scholar] [CrossRef]
- Little, B.J.; Blackwood, D.J.; Hinks, J.; Lauro, F.M.; Marsili, E.; Okamoto, A.; Rice, S.A.; Wade, S.A.; Flemming, H.-C. Microbially influenced corrosion—Any progress? Corros. Sci. 2020, 170, 108641. [Google Scholar] [CrossRef]
- Eckert, R.B.; Skovhus, T.L. (Eds.) Failure Analysis of Microbiologically Influenced Corrosion, 1st ed.; CRC Press: Boca Raton, FL, USA, 2021. [Google Scholar]
- Puentes-Cala, E.; Tapia-Perdomo, V.; Espinosa-Valbuena, D.; Reyes-Reyes, M.; Quintero-Santander, D.; Vasquez-Dallos, S.; Salazar, H.; Santamaría-Galvis, P.; Silva-Rodríguez, R.; Castillo-Villamizar, G. Microbiologically influenced corrosion: The gap in the field. Front. Environ. Sci. 2022, 10, 924842. [Google Scholar] [CrossRef]
- Lv, X.; Wang, C.; Liu, J.; Sand, W.; Nabuk Etim, I.-I.; Zhang, Y.; Xu, A.; Duan, J.; Zhang, R. The Microbiologically Influenced Corrosion and Protection of Pipelines: A Detailed Review. Materials 2024, 17, 4996. [Google Scholar] [CrossRef]
- Lu, B.; Zhang, Y.; Guo, D.; Li, Y.; Zhang, R.; Cui, N.; Duan, J. How Often Should Microbial Contamination Be Detected in Aircraft Fuel Systems? An Experimental Test of Aluminum Alloy Corrosion Induced by Sulfate-Reducing Bacteria. Materials 2024, 17, 3523. [Google Scholar] [CrossRef]
- Passman, F.J. (Ed.) Fuel and Fuel System Microbiology: Fundamentals, Diagnosis and Contamination Control; ASTM Manual Series: MNL 47; ASTM International: New York, NY, USA, 2003. [Google Scholar]
- Hill, E.C.; Hill, G.C. Microbial Contamination and Associated Corrosion in Fuels, during Storage, Distribution and Use. Adv. Mater. Res. 2008, 38, 257–268. [Google Scholar] [CrossRef]
- Enning, D.; Lee, J.S.; Skovhus, T.L. (Eds.) Microbiologically Influenced Corrosion in the Upstream Oil Gas Industry; CRC Press: Boca Raton, FL, USA; Taylor & Francis: New York, NY, USA, 2017. [Google Scholar]
- Skovhus, T.L.; Eckert, R.B.; Rodrigues, E. Management and control of microbiologically influenced corrosion (MIC) in the oil and gas industry—Overview and a North Sea case study. J. Biotechnol. 2017, 256, 31–45. [Google Scholar] [CrossRef]
- Ibrahim, A.; Hawboldt, K.; Bottaro, C.; Khan, F. Review and analysis of microbiologically influenced corrosion: The chemical environment in oil and gas facilities. Corros. Eng. Sci. Technol. 2018, 53, 549–563. [Google Scholar] [CrossRef]
- Taleb-Berrouane, M.; Khan, F.; Hawboldt, K.; Eckert, R.; Skovhus, T.L. Model for microbiologically influenced corrosion potential assessment for the oil and gas industry. Corros. Eng. Sci. Technol. 2018, 53, 378–392. [Google Scholar] [CrossRef]
- Kermani, B.; Harrop, D. Corrosion and Materials in Hydrocarbon Production: A Compendium of Operational and Engineering Aspects; Wiley-Asme Press Series; ASME Press: New York, NY, USA, 2019. [Google Scholar]
- Mand, J.; D Enning, D. Oil field microorganisms cause highly localized corrosion on chemically inhibited carbon steel. Microb. Biotechnol. 2020, 14, 171–185. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y. Review of microbial corrosion prevention and control technology in the petroleum industry. Eng. Res. Express 2024, 6, 022401. [Google Scholar] [CrossRef]
- Energy Institute. Guidelines for the Investigation of the Microbial Content of Petroleum Fuels and for the Implementation of Avoidance and Remedial Strategies, 2nd ed.; Energy Institute: London, UK, 2008. [Google Scholar]
- Geissler, B.; De Paula, R.; Keller-Schultz, C.; Lilley, J.; Keasler, V. Data mining to prevent microbiologically influenced corrosion? In NACE—International Corrosion Conference Series, Proceedings of the NACE Corrosion Conference 2014-4080, San Antonio, Texas, USA, 9–13 March 2014; NACE International: Houston, TX, USA, 2014; Paper Number NACE-2014-4080. [Google Scholar]
- Bautista, L.F.; Vargas, C.; González, N.; Molina, M.C.; Simarro, R.; Salmerón, A.; Murillo, Y. Assessment of biocides and ultrasound treatment to avoid bacterial growth in diesel fuel. Fuel Process. Technol. 2016, 152, 56–63. [Google Scholar] [CrossRef]
- Zimmer, A.; Cazarolli, J.C.; Cavalcanti, E.; Ferrao, M.F.; Gerbase, A.E.; Ferrão, M.F.; Piatnicki, C.M.S.; Bento, F.M. Monitoring of efficacy of biocides during storage simulation of diesel (B0), biodiesel (B100) and blends (B7 and B10). Fuel 2013, 112, 153–162. [Google Scholar] [CrossRef]
- Telegdi, J. Multifunctional Inhibitors: Additives to Control Corrosive Degradation and Microbial Adhesion. Coatings 2024, 14, 617. [Google Scholar] [CrossRef]
- Al-Saadi, S.; Raman, R.K.S. Silane Coatings for Corrosion and Microbiologically Influenced Corrosion Resistance of Mild Steel: A Review. Materials 2022, 15, 7809. [Google Scholar]
- Rasheed, P.A.; Pandey, R.P.; Jabbar, K.A.; Samara, A.; Abdullah, A.M.; Mahmoud, K.A. Chitosan/Lignosulfonate Nanospheres as “Green” Biocide for Controlling the Microbiologically Influenced Corrosion of Carbon Steel. Materials 2020, 13, 2484. [Google Scholar] [CrossRef]
- Stamps, B.W.; Bojanowski, C.L.; Drake, C.A.; Nunn, H.S.; Lloyd, P.F.; Floyd, J.G.; Emmerich, K.A.; Neal, A.R.; Crookes-Goodson, W.J.; Stevenson, B.S. In situ Linkage of Fungal and Bacterial Proliferation to Microbiologically Influenced Corrosion in B20 Biodiesel Storage Tanks. Front. Microbiol. 2020, 11, 167. [Google Scholar] [CrossRef]
- Knisz, J.; Eckert, R.; Gieg, L.M.; Koerdt, A.; Lee, J.S.; Silva, E.R.; Skovhus, T.L.; Stepec, B.A.A.; Wade, S.A. Microbiologically influenced corrosion—More than just microorganisms. FEMS Microbiol. Rev. 2023, 47, fuad041. [Google Scholar] [CrossRef] [PubMed]
- Ai, W.; Cho, H.M.; Mahmud, M.I. The Impact of Various Factors on Long-Term Storage of Biodiesel and Its Prevention: A Review. Energies 2024, 17, 3449. [Google Scholar] [CrossRef]
- Borecki, M.; Geca, M.; Zan, L.; Prus, P.; Korwin-Pawlowski, M.L. Multiparametric Methods for Rapid Classification of Diesel Fuel Quality Used in Automotive Engine Systems. Energies 2024, 17, 4189. [Google Scholar] [CrossRef]
- Soriano, A.; Luiz, F.; Martins, L.F.; Ventura, E.S.d.A.; de Landa, F.H.T.G.; Valoni, É.d.A.; Faria, F.R.D.; Ferreira, R.F.; Faller, M.C.K.; Valério, R.R.; et al. Microbiological aspects of biodiesel and biodiesel/diesel blends biodeterioration. Int. Biodeterior. Biodegrad. 2015, 99, 102–114. [Google Scholar] [CrossRef]
- Passman, F.J. Microbial contamination and its control in fuels and fuel systems since 1980-a review. Int. Biodeterior. Biodegrad. 2013, 81, 88–104. [Google Scholar] [CrossRef]
- Reddy, Y.S.; Reddy, C.O.; Subhadra, M.; Rajagopal, K. Long-term storage effect on molecular interactions of biodiesels and blends. Energy Sources Part A Recovery Util. Environ. Eff. 2024, 46, 9404–9418. [Google Scholar] [CrossRef]
- Kuna, M.; Miszczyk, A. Risks caused by microbiologically influenced corrosion in diesel fuel storage tanks. Ochr. Przed Koroz. 2024, 67, 60–67. [Google Scholar] [CrossRef]
- Miszczyk, A.; Darowicki, K. Inspection of protective linings using microwave spectroscopy combined with chemometric methods. Corros. Sci. 2012, 64, 234–242. [Google Scholar] [CrossRef]
- Russel, M.; Sophocleous, M.; JiaJia, S.; Xu, W.; Xiao, L.; Maskow, T.; Alam, M.; Georgiou, J. High-frequency, dielectric spectroscopy for the detection of electrophysiological/biophysical differences in different bacteria types and concentrations. Anal. Chim. Acta 2018, 1028, 86–95. [Google Scholar] [CrossRef]
- González-Teruel, J.D.; Jones, S.B.; Robinson, D.A.; Giménez-Gallego, J.; Zornoza, R.; Torres-Sánchez, R. Measurement of the broadband complex permittivity of soils in the frequency domain with a low-cost Vector Network Analyzer and an Open-Ended coaxial probe. Comput. Electron. Agric. 2022, 195, 106847. [Google Scholar] [CrossRef]
- John, W.; Schultz, J.W. Wideband Microwave Materials Characterization; Artech House: Boston, MA, USA, 2023. [Google Scholar]
- Adair, R.K. Vibrational Resonances in Biological Systems at Microwave Frequencies. Biophys. J. 2002, 82, 1147–1152. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Omer, A.E.; Shaker, G.; Safavi-Naeini, S. Rapid Viral Detection Using Microwave Sensors. In Proceedings of the 2022 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting, Denver, CO, USA, 10–15 July 2022; pp. 1336–1337. [Google Scholar]
- Furst, A.L.; Francis, M.B. Impedance-Based Detection of Bacteria. Chem. Rev. 2019, 119, 700–726. [Google Scholar] [CrossRef] [PubMed]
- Samuelsson, R.; Burvall, J.; Jirjis, R. Comparison of different methods for the determination of moisture content in biomass. Biomass Bioenergy 2006, 30, 929–934. [Google Scholar] [CrossRef]
- McKeown, M.S.; Trabelsi, S.; Nelson, S.O.; Tollner, E.W. Microwave sensing of moisture in flowing biomass pellets. Biosyst. Eng. 2017, 155, 152–160. [Google Scholar] [CrossRef]
- Kjeldsen, H.; Østergaard, P.F.; Strauss, H.; Nielsen, J.; Tallawi, B.; Georgin, E.; Sabouroux, P.; Nielsen, J.G.; Hougaard, J.O. Calibration Techniques for Water Content Measurements in Solid Biofuels. Energies 2024, 17, 635. [Google Scholar] [CrossRef]
- Olkkonen, M.-K. Online Moisture Measurements of Biofuel at a Paper Mill Employing a Microwave Resonator. Sensors 2018, 18, 3844. [Google Scholar] [CrossRef]
- Julrat, S.; Trabelsi, S. In-line microwave reflection measurement technique for determining moisture content of biomass material. Biosyst. Eng. 2019, 188, 24–30. [Google Scholar] [CrossRef]
- Aro, R.; Ayoub, M.W.B.; Leito, I.; Georgin, É.; Savanier, B. Calibration and Uncertainty Estimation for Water Content Measurement in Solids. Int. J. Thermophys. 2020, 42, 42. [Google Scholar] [CrossRef]
- Kulkarni, S.; Joshi, M.S. Design and Analysis of Shielded Vertically Stacked Ring Resonator as Complex Permittivity Sensor for Petroleum Oils. IEEE Trans. Microw. Theory Tech. 2015, 63, 2411–2417. [Google Scholar] [CrossRef]
- Xue, Q.; Tang, X.; Li, Y.; Liu, H.; Duan, X. Contactless and Simultaneous Measurement of Water and Acid contaminations in Oil Using a Flexible Microstrip Sensor. ACS Sens. 2020, 5, 171–179. [Google Scholar] [PubMed]
- Andria, G.; Attivissimo, F.; Di Nisio, A.; Trotta, A.; Camporeale, S.M.; Pappalardi, P. Design of a microwave sensor for measurement of water in fuel contamination. Measurement 2019, 136, 74–81. [Google Scholar] [CrossRef]
- Loconsole, A.M.; Francione, V.V.; Portosi, V.; Losito, O.; Catalano, M.; Di Nisio, A.; Attivissimo, F.; Prudenzano, F. Substrate-Integrated Waveguide Microwave Sensor for Water-in-Diesel Fuel Applications. Appl. Sci. 2021, 11, 10454. [Google Scholar] [CrossRef]
- Khalid, K.; Grozescu, I.V.; Tiong, L.K.; Sim, L.T.; Mohd, R. Water detection in fuel tanks using the microwave reflection technique. Meas. Sci. Technol. 2003, 14, 1905–1911. [Google Scholar] [CrossRef]
- Pozar, D. Microwave Engineering; John Wiley & Sons: Hoboken, NJ, USA, 2012. [Google Scholar]
- Delfino, J.R.; Pereira, T.C.; Costa Viegas, H.D.; Marques, E.P.; Pupim Ferreira, A.A.; Zhang, L.; Zhang, J.; Brandes Marques, A.L. A simple and fast method to determine water content in biodiesel by electrochemical impedance spectroscopy. Talanta 2018, 179, 753–759. [Google Scholar] [CrossRef]
- Macioszek, Ł.; Sobczyński, D. Moisture Content Assessment of Commercially Available Diesel Fuel Using Impedance Spectroscopy. Energies 2024, 17, 1903. [Google Scholar] [CrossRef]
- Arias, C.P.; Jofre, M.; Jofre, L.; Romeu, J.; Jofre-Roca, L. Superheterodyne Microwave System for the Detection of Bioparticles with Coplanar Electrodes on a Microfluidic Platform. IEEE Trans. Instrum. Meas. 2022, 71, 8002910. [Google Scholar] [CrossRef]
- Komariah, L.N.; Arita, S.; Rendana, M.; Ramayanti, C.; Suriani, N.L.; Erisna, D. Microbial contamination of diesel-biodiesel blends in storage tank; an analysis of colony morphology. Heliyon 2022, 8, e09264. [Google Scholar] [CrossRef]
- Martin-Sanchez, P.M.; Gorbushina, A.A.; Toepel, J. Quantification of microbial load in diesel storage tanks using culture- and qPCR-based approaches. Int. Biodeterior. Biodegrad. 2018, 126, 216–223. [Google Scholar]
- Hosseini, S.; Martinez-Chapa, S.O. Principles and Mechanism of MALDI-ToF-MS Analysis. In Fundamentals of MALDI-ToF-MS Analysis; Springer: Berlin/Heidelberg, Germany, 2017; pp. 1–19. [Google Scholar]
- Ludwiczak, A.; Zieliński, T.; Sibińska, E.; Czeszewska-Rosiak, G.; Złoch, M.; Rudnicka, J.; Tretyn, A.; Pomastowski, P. Comparative analysis of microbial contamination in diesel fuels using MALDI-TOF MS. Sci. Rep. 2025, 15, 4525. [Google Scholar] [CrossRef]
- ASTM E 1259-18; Standard Practice for Evaluation of Antimicrobials in Liquid Fuels Boiling Below 390 °C. ASTM International: West Conshohocken, PA, USA, 2018.
- Hammer, Ø.; Harper, D.A.T.; Ryan, P.D. PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 2001, 4, 9. Available online: http://palaeo-electronica.org/2001_1/past/issue1_01.htm (accessed on 8 December 2025).
- Jackson, J.E. A User’s Guide to Principal Components; John Wiley & Sons: Hoboken, NJ, USA, 2005. [Google Scholar]
- Brereton, R.G. Applied Chemometrics for Scientists; Wiley: Chichester, UK, 2007. [Google Scholar]
- Jolliffe, I.T. Principal Component Analysis, 2nd ed.; Springer: New York, NY, USA, 2010. [Google Scholar]
- Luciano, G.; Traverso, P.; Letardi, P. Applications of chemometric tools in corrosion studies. Corros. Sci. 2010, 52, 2750–2757. [Google Scholar] [CrossRef]
- Miszczyk, A.; Darowicki, K. Multispectral impedance quality testing of coil-coating system using principal component analysis. Prog. Org. Coat. 2010, 69, 330–334. [Google Scholar] [CrossRef]
- Bro, R.; Smilde, A.K. Principal component analysis. Anal. Methods 2014, 6, 2812–2831. [Google Scholar] [CrossRef]
- Miszczyk, A.; Darowicki, K. Multivariate analysis of impedance data obtained for coating systems of varying thickness applied on steel. Prog. Org. Coat. 2014, 77, 2000–2006. [Google Scholar] [CrossRef]
- Deisenroth, M.P.; Faisal, A.A.; Ong, C.S. Mathematics for Machine Learning; Cambridge University Press: Cambridge, UK, 2020. [Google Scholar]
- Drozda, M.; Miszczyk, A. Selection of organic coating systems for corrosion protection of industrial equipment. Coatings 2022, 12, 523. [Google Scholar] [CrossRef]
- EURAMET. Guidelines on the Evaluation of Vector Network Analysers, EURAMET Calibration Guide No. 12, Version 3.0, 03/2018. Available online: https://www.euramet.org/publications-media-centre/calibration-guidelines (accessed on 8 December 2025).











| Marking | Bacterial Content/ log(CFU/mL) | Fungi Content/ log(CFU/mL) |
|---|---|---|
| 7 | 7 | 6 |
| 6 | 6 | 5 |
| 5 | 5 | 4 |
| 4 | 4 | 3 |
| 3 | 3 | 2 |
| 0 | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Miszczyk, A.; Kuna, M.; Brillowska-Dąbrowska, A. Early-Stage Biofilm Prevention Enabled by Rapid Microwave Waveguide Detection of Planktonic Microorganisms in Diesel Fuel. Coatings 2026, 16, 101. https://doi.org/10.3390/coatings16010101
Miszczyk A, Kuna M, Brillowska-Dąbrowska A. Early-Stage Biofilm Prevention Enabled by Rapid Microwave Waveguide Detection of Planktonic Microorganisms in Diesel Fuel. Coatings. 2026; 16(1):101. https://doi.org/10.3390/coatings16010101
Chicago/Turabian StyleMiszczyk, Andrzej, Michał Kuna, and Anna Brillowska-Dąbrowska. 2026. "Early-Stage Biofilm Prevention Enabled by Rapid Microwave Waveguide Detection of Planktonic Microorganisms in Diesel Fuel" Coatings 16, no. 1: 101. https://doi.org/10.3390/coatings16010101
APA StyleMiszczyk, A., Kuna, M., & Brillowska-Dąbrowska, A. (2026). Early-Stage Biofilm Prevention Enabled by Rapid Microwave Waveguide Detection of Planktonic Microorganisms in Diesel Fuel. Coatings, 16(1), 101. https://doi.org/10.3390/coatings16010101

