Effects of Deep Rolling Process on Microstructures and Microhardness of Different Laser Cladding Materials Coated on UIC860 Grade 900A Rails
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials and Specimen
2.2. Laser Cladding
2.3. Deep Rolling
2.4. Microstructure and Microhardness
3. Results and Discussion
3.1. Microstructure Analysis
3.2. Phase Analysis by X-Ray Diffraction (XRD)
3.3. Microhardness Analysis
3.3.1. Microhardness of Laser Cladding Process
3.3.2. Comparison Between Laser Cladding and Laser Cladding Coupled with Deep Rolling
4. Conclusions
- The laser cladding process of nickel alloys (Colmonoy 42, Colmonoy 56, Colmonoy 63, and NiCrBSi + 17WC) resulted in dendritic microstructures with pores, due to rapid solidification and gas entrapment within the coating.
- The microstructure after laser cladding followed by the deep rolling process exhibited noticeable changes, including a reduction in pore size and number, smoother and denser coating, more distinct deformation lines, and shorter, thicker, and more dispersed dendritic structures.
- Regarding NiCrBSi + 17WC, the presence of hard WC particles and a very hard matrix limited the effect of deep rolling. Only slight grain elongation and minor reductions in porosity and internal deformation were observed. The overall microstructure remained largely unchanged compared to only laser cladding.
- Laser cladding significantly enhanced the surface microhardness of rail steel. All four nickel-based cladding materials outperformed the unclad substrate, with NiCrBSi + 17WC showing the highest hardness at 962 HV, followed by Colmonoy 63, Colmonoy 56, and Colmonoy 42. When combined with deep rolling, most materials exhibited an additional 20–25% increase in hardness within the first 100 μm from the surface, due to the compressive stresses introduced. However, NiCrBSi + 17WC showed only a minimal increase of 0.25%, attributed to its already high intrinsic hardness and the low deformability of WC particles.
- Colmonoy 63 exhibited the best coating performance, with a hardness increase of 24.78% after the DR process due to the compressive force applied.
- Based on the current experiments, pore formation is likely caused by gas entrapment, vaporization of volatile elements, or insufficient melting during cladding. While some regions of the Colmonoy 56 layer are practically free of pores, a small amount of porosity is still observed in other areas, indicating that the overall pore formation is limited. A detailed investigation of pore formation will be conducted in future work.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mattos Ferreira, V.; Mecozzi, M.G.; Petrov, R.H.; Sietsma, J. Microstructure development of pearlitic railway steels subjected to fast heating. Mater. Des. 2022, 221, 110989. [Google Scholar] [CrossRef]
- Hong, S.; Shi, X.; Lin, J.; Wu, Y.; Li, J.; Zheng, Y. Microstructure and cavitation-silt erosion behavior of two HVOF-sprayed hardfacing coatings for hydro-turbine applications. Alex. Eng. J. 2023, 69, 483–496. [Google Scholar] [CrossRef]
- Cannon, D.F.; Edel, K.O.; Grassie, S.L.; Sawley, K. Rail defects: An overview. Fatigue Fract. Eng. Mater. Struct. 2003, 26, 865–886. [Google Scholar] [CrossRef]
- Wang, W.J.; Guo, H.M.; Du, X.; Guo, J.; Liu, Q.Y.; Zhu, M.H. Investigation on the damage mechanism and prevention of heavy-haul railway rail. Eng. Fail. Anal. 2013, 35, 206–218. [Google Scholar] [CrossRef]
- Zhong, W.; Hu, J.J.; Shen, P.; Wang, C.Y.; Liu, Q.Y. Experimental investigation between rolling contact fatigue and wear of high-speed and heavy-haul railway and selection of rail material. Wear 2011, 271, 2485–2493. [Google Scholar] [CrossRef]
- Hu, Y.; Zhou, L.; Ding, H.H.; Tan, G.X.; Lewis, R.; Liu, Q.Y.; Guo, J.; Wang, W.J. Investigation on wear and rolling contact fatigue of wheel-rail materials under various wheel/rail hardness ratio and creepage conditions. Tribol. Int. 2020, 143, 106087. [Google Scholar] [CrossRef]
- Muster, H.; Schmedders, H.; Wick, K.; Pradier, H. Rail rolling contact fatigue. The performance of naturally hard and head-hardened rails in track. Wear 1996, 191, 54–64. [Google Scholar] [CrossRef]
- Christodoulou, P.I.; Kermanidis, A.T.; Haidemenopoulos, G.N. Fatigue and fracture behavior of pearlitic Grade 900A steel used in railway applications. Theor. Appl. Fract. Mech. 2016, 83, 51–59. [Google Scholar] [CrossRef]
- Department of Rail Transport. Railway Transport Standard No. MoT–C–009–2566: Maintenance Standard for Mainline Railway Tracks; Department of Rail Transport: Bangkok, Thailand, 2024. [Google Scholar]
- Berger, L.M. Application of hardmetals as thermal spray coatings. Int. J. Refract. Met. Hard Mater. 2015, 49, 350–364. [Google Scholar] [CrossRef]
- Zlamal, T.; Mrkvica, I.; Szotkowski, T.; Malotova, S. The influence of surface treatment of PVD coating on its quality and wear resistant. Coatings 2019, 9, 439. [Google Scholar] [CrossRef]
- You, Q.; Xiong, J.; Guo, Z.; Huo, Y.; Liang, L.; Yang, L. Study on coating performance of CVD coated cermet tools for 4340 steel cutting. Int. J. Refract. Met. Hard Mater. 2021, 98, 105554. [Google Scholar] [CrossRef]
- Adachi, S.; Ueda, N. Surface hardness improvement of plasma-sprayed AISI 316L stainless steel coating by low-temperature plasma carburizing. Adv. Powder Technol. 2013, 24, 818–823. [Google Scholar] [CrossRef]
- Wang, X.; Bai, S.; Li, F.; Li, D.; Zhang, J.; Tian, M.; Zhang, Q.; Tong, Y.; Zhang, Z.; Wang, G.; et al. Effect of plasma nitriding and titanium nitride coating on the corrosion resistance of titanium. J. Prosthet. Dent. 2016, 116, 450–456. [Google Scholar] [CrossRef] [PubMed]
- Kusmoko, A.; Dunne, D.; Li, H. A comparative study for wear resistance of Stellite 6 on nickel alloy substrate produced by laser cladding, HVOF and plasma spraying techniques. Int. J. Curr. Eng. Technol. 2014, 4, 32–36. [Google Scholar]
- Oberländer, B.C.; Lugscheider, E. Comparison of properties of coatings produced by laser cladding and conventional methods. Mater. Sci. Technol. 1992, 8, 642–649. [Google Scholar] [CrossRef]
- Navas, C.; Colaço, R.; de Damborenea, J.; Vilar, R. Abrasive wear behaviour of laser clad and flame sprayed-melted NiCrBSi coatings. Surf. Coat. Technol. 2006, 200, 6854–6862. [Google Scholar] [CrossRef]
- Liu, X.B.; Meng, X.J.; Liu, H.Q.; Shi, G.L.; Wu, S.H.; Sun, C.F.; Wang, M.D.; Qi, L.H. Development and characterization of laser clad high temperature self-lubricating wear resistant composite coatings on Ti–6Al–4V alloy. Mater. Des. 2014, 55, 404–409. [Google Scholar] [CrossRef]
- Vilar, R. Laser cladding. Laser Appl. 2001, 11, 64–79. [Google Scholar] [CrossRef]
- Li, X.; Wang, X.; Wang, Y.; Yu, Y.; Hu, Z.; Zhao, Y. Microscopic characteristics and properties of Co-based coating by pulse current-assisted laser cladding on high carbon steel. Surf. Coat. Technol. 2024, 494, 131367. [Google Scholar] [CrossRef]
- Wang, R.; Ouyang, C.; Li, Q.; Bai, Q.; Zhao, C.; Liu, Y. Study of the microstructure and corrosion properties of a Ni-based alloy coating deposited onto the surface of ductile cast iron using high-speed laser cladding. Materials 2022, 15, 1643. [Google Scholar] [CrossRef]
- Soboleva, N.N.; Makarov, A.V.; Malygina, I.Y. NiCrBSi coating obtained by laser cladding and subsequent deformation processing. J. Phys. Conf. Ser. 2018, 946, 012004. [Google Scholar] [CrossRef]
- Zhang, X.S.; Wang, Q.Y.; Deng, Y.H.; Liu, L.Y.; Xi, Y.C.; Dong, L.J.; Gao, Q.Y.; Zhang, J.; Lin, Y.H. Synergistic effect of temperature and CO2 on corrosion behavior and mechanism of laser cladding Ni/WC composite coating. Corros. Commun. 2025, 9, 1–12. [Google Scholar] [CrossRef]
- Hu, Y.B.; Cheng, C.Q.; Cao, T.S.; Zhang, L.; Zhao, J. A study on the multiple stages of oxidation kinetics in a single crystal nickel-based superalloy. Corros. Sci. 2021, 188, 109512. [Google Scholar] [CrossRef]
- Xiao, H.; Sun, J.; Li, W.; Liu, S.B.; Fu, L.B.; Jiang, S.M. Effect of Pt on the microstructure and oxidation behavior of NiCrAlYSi+AlY coating on a Ni-based superalloy. Corros. Sci. 2022, 194, 109916. [Google Scholar] [CrossRef]
- Wang, W.J.; Hu, J.; Guo, J.; Liu, Q.Y.; Zhu, M.H. Effect of laser cladding on wear and damage behaviors of heavy-haul wheel/rail materials. Wear 2014, 311, 130–136. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Y.; Wang, L.; Jin, Y.; Wang, Z.; Shi, X. Effect of ceramic particles on Ni-based alloy coating fabricated via laser technology. Lubricants 2023, 11, 483. [Google Scholar] [CrossRef]
- Yildirimli, K.; Boschetti Pereira, H.; Goldenstein, H.; Fletcher, D.I.; Lee, Z.S.; Lewis, R. Scaling-up laser cladding of rails. Wear 2024, 540–541, 205227. [Google Scholar] [CrossRef]
- Roy, T.; Paradowska, A.; Abrahams, R.; Law, M.; Mutton, P.; Soodi, M.; Yan, W. Residual stress in laser cladded heavy-haul rails investigated by neutron diffraction. J. Mater. Process. Technol. 2020, 278, 116511. [Google Scholar] [CrossRef]
- Betsofen, S.Y.; Grigorovich, K.V.; Ashmarin, A.A.; Abdurashitov, A.Y.; Lebedev, M.A. Peculiarities of formation of residual stresses in welded joints and Stellite weld cladding on rail steel. Inorg. Mater. Appl. Res. 2020, 11, 634–640. [Google Scholar] [CrossRef]
- Rao, D.S.; Hebbar, H.S.; Komaraiah, M.; Kempaiah, U.N. Investigations on the effect of ball burnishing parameters on surface hardness and wear resistance of HSLA dual-phase steels. Mater. Manuf. Process. 2008, 23, 295–302. [Google Scholar] [CrossRef]
- Regazzi, D.; Cantini, S.; Cervello, S.; Foletti, S.; Pourheidar, A.; Beretta, S. Improving fatigue resistance of railway axles by cold rolling: Process optimisation and new experimental evidences. Int. J. Fatigue 2020, 137, 105603. [Google Scholar] [CrossRef]
- Meyer, D.; Kämmler, J. Surface integrity of AISI 4140 after deep rolling with varied external and internal loads. Procedia CIRP 2016, 45, 363–366. [Google Scholar] [CrossRef]
- Kloos, K.H.; Fuchsbauer, B.; Adelmann, J. Fatigue properties of specimens similar to components deep rolled under optimized conditions. Int. J. Fatigue 1987, 9, 35–42. [Google Scholar] [CrossRef]
- dos Santos, F.S.; Abrao, A.M.; Denkena, B.; Breidenstein, B.; Meyer, K. Influência da operação de roleteamento sobre a integridade superficial do aço ABNT 1020. Matéria 2020, 25, 12554. [Google Scholar]
- Abrão, A.M.; Denkena, B.; Breidenstein, B.; Mörke, T. Surface and subsurface alterations induced by deep rolling of hardened AISI 1060 steel. Prod. Eng. 2014, 8, 551–558. [Google Scholar] [CrossRef]
- Nagarajan, B.; Castagne, S. Microstructure study of nickel-based superalloys after deep cold rolling. Mater. Sci. Forum 2017, 879, 169–174. [Google Scholar] [CrossRef]
- Baisukhan, A.; Nakkiew, W. Effects of deep rolling on surface residual stress and microhardness of JIS SS400 MIG welding. Mater. Sci. Forum 2018, 939, 31–37. [Google Scholar] [CrossRef]
- Pertoll, T.; Buzzi, C.; Dutzler, A.; Leitner, M.; Seisenbacher, B.; Winter, G.; Boronkai, L. Experimental and numerical investigation of the deep rolling process focusing on 34CrNiMo6 railway axles. Int. J. Mater. Form. 2023, 16, 51. [Google Scholar] [CrossRef]
- Wall Colmonoy Corp. Colmonoy ® Alloys—Technical Data Sheet; Wall Colmonoy Corp.: Madison Heights, MI, USA, 2014. [Google Scholar]
- Du, B.; Yang, J.; Cui, C.; Sun, X. Effects of grain refinement on the microstructure and tensile behavior of K417G superalloy. Mater. Sci. Eng. A 2015, 623, 59–67. [Google Scholar] [CrossRef]
- Park, S.; Kayani, S.H.; Kim, H.; Jung, I.D.; Reddy, N.S.; Euh, K.; Seol, J.B.; Kim, J.G.; Sung, H. Effect of interdendritic precipitations on the mechanical properties of GBF- or EMS-processed Al–Zn–Mg–Cu alloys. Crystals 2021, 11, 1162. [Google Scholar] [CrossRef]
- Flemings, M.C. Dendrite fragmentation in semisolid casting: Could we do this better? Solid State Phenom. 2019, 285, 3–11. [Google Scholar] [CrossRef]
- Zhang, J.; Hou, S. Effects of CTCP modification on microstructure and wear behavior of CTCP-NiCrBSi/heat resistant steel composite layer. Materials 2018, 11, 2202. [Google Scholar] [CrossRef]
- Chen, S.; Feng, A.; Chen, C.; Song, X. Research on the process of laser cladding Ni60 coating on high-nickel cast iron surfaces. Processes 2024, 12, 647. [Google Scholar] [CrossRef]
- Lim, L.C.; Ming, Q.; Chen, Z.D. Microstructures of laser-clad nickel-based hardfacing alloys. Surf. Coat. Technol. 1998, 106, 183–192. [Google Scholar] [CrossRef]
- Qian, S.; Dai, Y.; Guo, Y.; Zhang, Y. Microstructure and wear resistance of multi-layer Ni-based alloy cladding coating on 316L SS under different laser power. Materials 2021, 14, 781. [Google Scholar] [CrossRef]
- Lewis, S.R.; Fretwell-Smith, S.; Goodwin, P.S.; Smith, L.; Lewis, R.; Aslam, M.; Fletcher, D.I.; Murray, K.; Lambert, R. Improving rail wear and RCF performance using laser cladding. Wear 2016, 366–367, 268–278. [Google Scholar] [CrossRef]
- Wang, X.; Xiong, X.; Huang, K.; Ying, S.; Tang, M.; Qu, X.; Ji, W.; Qian, C.; Cai, Z. Effects of deep rolling on the microstructure modification and fatigue life of 35Cr2Ni4MoA bolt threads. Metals 2022, 12, 1224. [Google Scholar] [CrossRef]
- Clare, A.; Oyelola, O.; Folkes, J.; Farayibi, P. Laser cladding for railway repair and preventative maintenance. J. Laser Appl. 2012, 24, 032004. [Google Scholar] [CrossRef]
- Lu, P.; Lewis, S.R.; Fretwell-Smith, S.; Engelberg, D.L.; Fletcher, D.I.; Lewis, R. Laser cladding of rail: The effects of depositing material on lower rail grades. Wear 2019, 438–439, 203045. [Google Scholar] [CrossRef]
- Zheng, K.; Lin, Y.; Cai, J.; Lei, C. Corrosion resistance and tribological properties of laser cladding layer of H13 die steel strengthened by ultrasonic rolling. Chin. J. Mech. Eng. 2022, 35, 137. [Google Scholar] [CrossRef]
Element | Mn | C | Si | Pmax | Smax | Pb | Cr | W | Fe |
---|---|---|---|---|---|---|---|---|---|
Standard | 0.80–1.30 | 0.60–0.80 | 0.10–0.50 | 0.04 | 0.04 | - | - | - | - |
Measure | 1.095 | - | - | - | - | 0.113 | 0.079 | 0.007 | Bal. |
Rail No. | Materials | Chemical Composition (wt.%) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
C | Si | Ni | Fe | Cr | W | B | Mo | P | ||
1 | Colmonoy 42 | 0.2 | 2.8 | Bal. | 0.3 | 4.0 | - | 1.2 | 3.0 | 2.0 |
2 | Colmonoy 56 | 0.5 | - | Bal. | 4.0 | 13.0 | - | 2.6 | 3.8 | - |
3 | Colmonoy 63 | 0.6 | 4.2 | Bal. | 4.0 | 14.0 | - | 3.0 | - | - |
4 | NiCrBSi + 17WC | 0.6 | 4.0 | Bal. | 3.5 | 15.0 | 15.5 | 3.0 | - | - |
Rolling Pressure (bar). | Rolling Speed (mm/min) | Rolling Offset (mm) |
---|---|---|
150 | 1400 | 0.10 |
Materials Cladding | Microhardness Vickers (HV) | ||
---|---|---|---|
LC | LC + DR | % Increase Compared to LC | |
Colmonoy 42 | 501.6 | 597.5 | +19.12% |
Colmonoy 56 | 652.8 | 799.33 | +22.45% |
Colmonoy 63 | 756.1 | 943.47 | +24.78% |
NiCrBSi + 17WC | 959.23 | 961.63 | +0.25% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jermkhwun, S.; Baisukhan, A.; Nakkiew, W.; Wongkasae, C. Effects of Deep Rolling Process on Microstructures and Microhardness of Different Laser Cladding Materials Coated on UIC860 Grade 900A Rails. Coatings 2025, 15, 1050. https://doi.org/10.3390/coatings15091050
Jermkhwun S, Baisukhan A, Nakkiew W, Wongkasae C. Effects of Deep Rolling Process on Microstructures and Microhardness of Different Laser Cladding Materials Coated on UIC860 Grade 900A Rails. Coatings. 2025; 15(9):1050. https://doi.org/10.3390/coatings15091050
Chicago/Turabian StyleJermkhwun, Silsupa, Adirek Baisukhan, Wasawat Nakkiew, and Chonnikan Wongkasae. 2025. "Effects of Deep Rolling Process on Microstructures and Microhardness of Different Laser Cladding Materials Coated on UIC860 Grade 900A Rails" Coatings 15, no. 9: 1050. https://doi.org/10.3390/coatings15091050
APA StyleJermkhwun, S., Baisukhan, A., Nakkiew, W., & Wongkasae, C. (2025). Effects of Deep Rolling Process on Microstructures and Microhardness of Different Laser Cladding Materials Coated on UIC860 Grade 900A Rails. Coatings, 15(9), 1050. https://doi.org/10.3390/coatings15091050