Transient Response of Fine-Grained Piezoelectric Coating Composite Structures with a Griffith-Type Interface Crack Under Thermal Impact Loading
Abstract
1. Introduction
2. Problem Formulation
3. Solution to the Problem
3.1. Temperature Field
3.2. Thermal Stress and Electric Displacement Fields
4. Numerical Examples and Discussion
4.1. Verification
4.2. Dynamic Intensity Factors of Fine-Grained Piezoelectric Coating/Substrate Structure
4.2.1. Discussing the Effect of Material Parameters on Dynamic Intensity Factor
4.2.2. Discussing the Effect of Material Parameters on the Dynamic Intensity Factor
4.2.3. Discussing the Effect of Material Parameters on the Electric Displacement Intensity Factor
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
Left and right ends of the interface crack | |
, | Unknown functions satisfying the temperature field |
The coefficient matrix of linear equations | |
Unknown functions , | |
On the constant terms of linear equations with unknown functions , | |
The temperature field in the Laplace domain | |
Integral expression with unknown function | |
Integral expression with unknown function | |
Integral expression with unknown function | |
The solutions to Equation (22) | |
The solutions to Equation (23) | |
The solutions to Equation (24) | |
The special solutions of Equation (7) | |
The special solutions of Equation (8) | |
The special solutions of Equation (9) | |
Thickness of the coating | |
Thickness of the substrate | |
Limit value of when tends to infinity | |
Combination of , , and | |
Combination of and | |
Dislocation density functions | |
Integral expression with unknown function | |
Integral expression with unknown function | |
Integral expression with unknown function | |
Singular integral equations | |
Intensity factor in the Laplace transform plane | |
Electric displacement intensity factors in the Laplace transform plane | |
The displacement components | |
Electric potential | |
-axis of space rectangular coordinate system | |
-axis of space rectangular coordinate system | |
-axis of space rectangular coordinate system | |
Stress components | |
Stress components | |
Stress components | |
Electric displacement components | |
Electric displacement components |
References
- Pak, Y.E. Crack extension force in a piezoelectric material. J. Appl. Mech. 1990, 57, 647–653. [Google Scholar] [CrossRef]
- Park, S.B.; Sun, C.T. Fracture criteria for piezoelectric ceramics. J. Am. Ceram. Soc. 1995, 78, 1475–1480. [Google Scholar] [CrossRef]
- Govorukha, V.B.; Loboda, V.V. Contact zone models for an interface crack in a piezoelectric material. Acta Mech. 2000, 140, 233–246. [Google Scholar] [CrossRef]
- Chen, Z.T.; Worswick, M.J. Antiplane mechanical and in plane electric time-dependent load applied to two coplanar cracks in piezoelectric ceramic material. Theor. Appl. Fract. Mech. 2000, 33, 173–184. [Google Scholar] [CrossRef]
- Beom, H.G.; Atluri, S.N. Near-tip and intensity factors for interfacial cracks in dissimilar anisotropic piezoelectric media. Int. J. Fatigue 1996, 75, 163–183. [Google Scholar] [CrossRef]
- Ashida, F.; Choi, J.S.; Noda, N. Control of Elastic Displacement in Piezoelectric Based Intelligent Plate Subjected to Thermal Load. Int. J. Eng. Sci. 1997, 35, 851–868. [Google Scholar] [CrossRef]
- Li, X.F.; Tang, G.J. Antiplane interface crack between two bonded dissimilar piezoelectric layers. Eur. J. Mech.-A/Solids 2003, 22, 231–242. [Google Scholar] [CrossRef]
- Zhong, X.C.; Liu, F.; Li, X.F. Transient response of a magnetoelectroelastic solid with two collinear dielectric cracks under impacts. Int. J. Solids Struct. 2009, 46, 2950–2958. [Google Scholar] [CrossRef]
- Ueda, S. Thermally Induced Fracture of a Piezoelectric Laminate with a Crack Normal to Interfaces. J. Therm. Stresses. 2003, 26, 311–331. [Google Scholar] [CrossRef]
- Ueda, S. A penny-shaped crack in a functionally graded piezoelectric strip under thermal loading. Eng. Fract. Mech. 2007, 74, 1255–1273. [Google Scholar] [CrossRef]
- Wang, B.L.; Mai, Y.W. Thermal shock fracture of Piezoelectric Materia. Philos. Mag. 2010, 86, 631–657. [Google Scholar] [CrossRef]
- Chen, Z.T.; Karihaloo, B.L. Dynamic response of a cracked piezoelectric ceramic under arbitrary electro-mechanical impact. Int. J. Solids Struct. 1999, 36, 5125–5133. [Google Scholar] [CrossRef]
- Sladek, J.; Sladek, V.; Solek, P.; Zhang, C.H. Fracture analysis in continuously nonhomogeneous magneto-electro-elastic solids under a thermal load by the MLPG. Int. J. Solids Struct. 2010, 47, 1381–1391. [Google Scholar] [CrossRef]
- Liu, P.; Yu, T.T.; Bui, T.Q.; Zhang, C.Z.; Xu, Y.P.; Lim, C.W. Transient thermal shock fracture analysis of functionally graded piezoelectric materials by the extended finite element method. Int. J. Solids Struct. 2014, 51, 2167–2182. [Google Scholar] [CrossRef]
- Khatib, O.; Kuna, M.; Kozinov, S. Transient thermal fracture analysis of ferroelectric ceramics under electromechanical loading. Smart Mater. Struct. 2021, 30, 085033. [Google Scholar] [CrossRef]
- Jani, S.M.H.; Kiani, Y. Symmetric Thermo-Electro-Elastic Response of Piezoelectric Hollow Cylinder Under Thermal Shock Using Lord–Shulman Theory. Int. J. Struct. Stab. Dyn. 2020, 20, 2050059. [Google Scholar] [CrossRef]
- Jani, S.M.H.; Kiani, Y.; Beni, Y.T. Generalized piezothermoelasticity of hollow spheres under thermal shock using Lord–Shulman theory. J. Therm. Stresses. 2023, 47, 347–362. [Google Scholar] [CrossRef]
- Bayones, F.S.; Abo-Dahab, S.M.; Hussein, N.S.; Abd-Alla, A.M.; Alshehri, H.A. Magneto-Thermoelasticity with Thermal Shock Considering Two Temperatures and LS Model. Comput. Mater. Contin. 2022, 70, 3365–3381. [Google Scholar] [CrossRef]
- Tian, X.J.; Zhou, Y.T.; Zhang, C.Z. Transient response of a ffnite thickness strip with thermoelectric effects loaded by an electrode. Comput. Mech. Mater. 2023, 177, 104556. [Google Scholar] [CrossRef]
- Chadaram, S.; Yadav, S.K. Three-dimensional thermal fracture analysis of piezoelectric material by extended finite element methods. Eng. Fract. Mech. 2021, 256, 107981. [Google Scholar] [CrossRef]
- Lobo, R.P.S.M.; Mohallem, N.D.S.; Moreira, R.L. Grain-size effects on diffuse phase transitions of sol-gel prepared barium titanate ceramics. J. Am. Ceram. Soc. 1995, 78, 1343–1346. [Google Scholar] [CrossRef]
- Bell, A.J.; Moulson, A.J. The effect of grain size on the dielectric properties of barium titanate ceramic. Br. Ceram. Proc. 1985, 36, 57–66. [Google Scholar]
- Hu, S.S.; Li, J.L. Interaction between Screw Dislocation and Interfacial Crack in Fine-Grained Piezoelectric Coatings under Steady-State Thermal Loading. Appl. Sci. 2021, 11, 11922. [Google Scholar] [CrossRef]
- Hu, S.S.; Li, J.L. Transient Response of Multiple Interface Cracks in Fine-Grained Coating Composite Structures under Impact Loading. Adv. Math. Phys. 2024, 2024, 15. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, S.; Li, J. Transient Response of Fine-Grained Piezoelectric Coating Composite Structures with a Griffith-Type Interface Crack Under Thermal Impact Loading. Coatings 2025, 15, 1000. https://doi.org/10.3390/coatings15091000
Hu S, Li J. Transient Response of Fine-Grained Piezoelectric Coating Composite Structures with a Griffith-Type Interface Crack Under Thermal Impact Loading. Coatings. 2025; 15(9):1000. https://doi.org/10.3390/coatings15091000
Chicago/Turabian StyleHu, Shuaishuai, and Junlin Li. 2025. "Transient Response of Fine-Grained Piezoelectric Coating Composite Structures with a Griffith-Type Interface Crack Under Thermal Impact Loading" Coatings 15, no. 9: 1000. https://doi.org/10.3390/coatings15091000
APA StyleHu, S., & Li, J. (2025). Transient Response of Fine-Grained Piezoelectric Coating Composite Structures with a Griffith-Type Interface Crack Under Thermal Impact Loading. Coatings, 15(9), 1000. https://doi.org/10.3390/coatings15091000