Poly(Methyl Methacrylate)-Based Core-Shell Electrospun Fibers: Structural and Morphological Analysis
Abstract
1. Introduction
2. Materials and Methods
2.1. Coaxial Electrospinning
2.2. Characterization of Samples
3. Results and Discussion
3.1. Morphology of Electrospun Fibers
3.2. FTIR of Coaxial Composite Fibers
- Ratios relative to unreacted DCPD
- Shell integrity and core polymerization
- DCPD conversion efficiency
3.3. Optical Microscopy and FTIR Analysis of Uncut and Cut Nanofiber Mats
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, S.; Urban, M.W. Self-Healing Polymers. Nat. Rev. Mater. 2020, 5, 562–583. [Google Scholar] [CrossRef]
- Li, B.; Cao, P.-F.; Saito, T.; Sokolov, A.P. Intrinsically Self-Healing Polymers: From Mechanistic Insight to Current Challenges. Chem. Rev. 2023, 123, 701–735. [Google Scholar] [CrossRef] [PubMed]
- Vintila, I.S.; Ghitman, J.; Iovu, H.; Paraschiv, A.; Cucuruz, A.; Mihai, D.; Popa, I.F. A Microvascular System Self-Healing Approach on Polymeric Composite Materials. Polymers 2022, 14, 2798. [Google Scholar] [CrossRef] [PubMed]
- Spinelli, G.; Guarini, R.; Ivanov, E.; Calabrese, E.; Raimondo, M.; Longo, R.; Guadagno, L.; Vertuccio, L. Nanoindentation Response of Structural Self-Healing Epoxy Resin: A Hybrid Experimental–Simulation Approach. Polymers 2024, 16, 1849. [Google Scholar] [CrossRef]
- Islam, S.; Bhat, G. Progress and Challenges in Self-Healing Composite Materials. Mater. Adv. 2021, 2, 1896–1926. [Google Scholar] [CrossRef]
- Wen, N.; Song, T.; Ji, Z.; Jiang, D.; Wu, Z.; Wang, Y.; Guo, Z. Recent Advancements in Self-Healing Materials: Mechanicals, Performances and Features. React. Funct. Polym. 2021, 168, 105041. [Google Scholar] [CrossRef]
- Cerdan, K.; Thys, M.; Costa Cornellà, A.; Demir, F.; Norvez, S.; Vendamme, R.; Van Den Brande, N.; Van Puyvelde, P.; Brancart, J. Sustainability of Self-Healing Polymers: A Holistic Perspective towards Circularity in Polymer Networks. Prog. Polym. Sci. 2024, 152, 101816. [Google Scholar] [CrossRef]
- Radovic, I.; Stajcic, A.; Radisavljevic, A.; Veljkovic, F.; Cebela, M.; Mitic, V.V.; Radojevic, V. Solvent Effects on Structural Changes in Self-Healing Epoxy Composites. Mater. Chem. Phys. 2020, 256, 123761. [Google Scholar] [CrossRef]
- Pan, J.; Liu, Z.; Zhang, B.; Qi, M.; Feng, Y. Embedment of Molybdenum Disulfide in Electrospun Fibers as an Integrated Cathode for Lithium-Ion Batteries. Coatings 2024, 14, 1465. [Google Scholar] [CrossRef]
- Yoon, S.-K.; Pahn, L.-O.; Kyun, J.-J.; Cho, S.-H. Fabrication of Air Conditioning Antimicrobial Filter for Electrically Powered Port Tractors via Electrospinning Coating. Coatings 2024, 14, 180. [Google Scholar] [CrossRef]
- Mohammadalizadeh, Z.; Bahremandi-Toloue, E.; Karbasi, S. Synthetic-Based Blended Electrospun Scaffolds in Tissue Engineering Applications. J. Mater. Sci. 2022, 57, 4020–4079. [Google Scholar] [CrossRef]
- Mostofizadeh, M.; Pitcher, M.L.; Sheikhi, A. Coaxial Electrospinning. In Electrospun and Nanofibrous Membranes; Elsevier: Amsterdam, The Netherlands, 2023; pp. 105–126. ISBN 978-0-12-823032-9. [Google Scholar]
- Serrano-Garcia, W.; Ramakrishna, S.; Thomas, S.W. Electrospinning Technique for Fabrication of Coaxial Nanofibers of Semiconductive Polymers. Polymers 2022, 14, 5073. [Google Scholar] [CrossRef]
- Yu, P.; Zhang, J.; Long, J. Coaxial Mechano-electrospinning of Oriented Fibers with Core-shell Structure for Tactile Sensing. Polym. Adv. Technol. 2023, 34, 821–831. [Google Scholar] [CrossRef]
- Chen, B.; Zhang, Y.; Mao, C.; Gan, Y.; Li, B.; Cai, H. Research on Electrospinning Thermosetting-Thermoplastic Core-Shell Nanofiber for Rapid Self-Healing of Carbon Fiber/Epoxy Composites. Compos. Sci. Technol. 2022, 227, 109577. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, C.; Cao, X.; Xu, X.; Bai, J.; Zhu, J.; Li, R.; Satoh, T. Construction of Novel Coaxial Electrospun Polyetherimide@polyaniline Core-Shell Fibrous Membranes as Free-Standing Flexible Electrodes for Supercapacitors. J. Power Sources 2024, 602, 234305. [Google Scholar] [CrossRef]
- Fan, S.-T.; Guo, D.-L.; Zhang, Y.-T.; Chen, T.; Li, B.-J.; Zhang, S. Washable and Stable Coaxial Electrospinning Fabric with Superior Electromagnetic Interference Shielding Performance for Multifunctional Electronics. Chem. Eng. J. 2024, 488, 151051. [Google Scholar] [CrossRef]
- Castillo Ortega, M.M.; Quiroz Castillo, J.M.; Del Castillo Castro, T.; Rodriguez Felix, D.E.; Santacruz Ortega, H.D.C.; Manero, O.; Lopez Gastelum, K.A.; Chan Chan, L.H.; Martinez, D.H.; Tapia Hernández, J.A.; et al. Aloe Vera Mucilage Loaded Gelatin Electrospun Fibers Contained in Polylactic Acid Coaxial System and Polylactic Acid and Poly(e-Caprolactone) Tri-Layer Membranes for Tissue Engineering. Bio-Med. Mater. Eng. 2024, 35, 387–399. [Google Scholar] [CrossRef]
- Shao, Z.; Zhang, X.; Song, Z.; Liu, J.; Liu, X.; Zhang, C. Simulation Guided Coaxial Electrospinning of Polyvinylidene Fluoride Hollow Fibers with Tailored Piezoelectric Performance. Small 2023, 19, e2303285. [Google Scholar] [CrossRef]
- Ubomba-Jaswa, E.; Fernández-Ibáñez, P.; Navntoft, C.; Polo-López, M.I.; McGuigan, K.G. Investigating the Microbial Inactivation Efficiency of a 25 L Batch Solar Disinfection (SODIS) Reactor Enhanced with a Compound Parabolic Collector (CPC) for Household Use. J. Chem. Technol. Biotechnol. 2010, 85, 1028–1037. [Google Scholar] [CrossRef]
- Martínez-García, A.; Oller, I.; Vincent, M.; Rubiolo, V.; Asiimwe, J.K.; Muyanja, C.; McGuigan, K.G.; Fernández-Ibáñez, P.; Inmaculada Polo-López, M. Meeting Daily Drinking Water Needs for Communities in Sub-Saharan Africa Using Solar Reactors for Harvested Rainwater. Chem. Eng. J. 2022, 428, 132494. [Google Scholar] [CrossRef]
- Busolo, T.; Ura, D.P.; Kim, S.K.; Marzec, M.M.; Bernasik, A.; Stachewicz, U.; Kar-Narayan, S. Surface Potential Tailoring of PMMA Fibers by Electrospinning for Enhanced Triboelectric Performance. Nano Energy 2019, 57, 500–506. [Google Scholar] [CrossRef]
- Camargo, E.R.; Serafim, B.M.; Da Cruz, A.F.; Soares, P.; De Oliveira, C.C.; Saul, C.K.; Marino, C.E.B. Bioactive Response of PMMA Coating Obtained by Electrospinning on ISO5832-9 and Ti6Al4V Biomaterials. Surf. Coat. Technol. 2021, 412, 127033. [Google Scholar] [CrossRef]
- Ura, D.P.; Karbowniczek, J.E.; Szewczyk, P.K.; Metwally, S.; Kopyściański, M.; Stachewicz, U. Cell Integration with Electrospun PMMA Nanofibers, Microfibers, Ribbons, and Films: A Microscopy Study. Bioengineering 2019, 6, 41. [Google Scholar] [CrossRef] [PubMed]
- Trentin, A.; Gasparini, A.d.L.; Faria, F.A.; Harb, S.V.; Dos Santos, F.C.; Pulcinelli, S.H.; Santilli, C.V.; Hammer, P. Barrier Properties of High Performance PMMA-Silica Anticorrosion Coatings. Prog. Org. Coat. 2020, 138, 105398. [Google Scholar] [CrossRef]
- Kovač, N.; Kapun, B.; Može, M.; Golobič, I.; Kralj, S.; Milošev, I.; Rodič, P. Superhydrophobic Coatings Based on PMMA-Siloxane-Silica and Modified Silica Nanoparticles Deposited on AA2024-T3. Polymers 2025, 17, 195. [Google Scholar] [CrossRef]
- Dukali, R.; Radovic, I.; Stojanovic, D.; Sevic, D.; Radojevic, V.; Jocic, D.; Aleksic, R. Electrospinning of Laser Dye Rhodamine B-Doped Poly(Methyl Methacrylate) Nanofibers. J. Serbian Chem. Soc. 2014, 79, 867–880. [Google Scholar] [CrossRef]
- Abozaid, R.M.; Lazarević, Z.Ž.; Radović, I.; Gilić, M.; Šević, D.; Rabasović, M.S.; Radojević, V. Optical Properties and Fluorescence of Quantum Dots CdSe/ZnS-PMMA Composite Films with Interface Modifications. Opt. Mater. 2019, 92, 405–410. [Google Scholar] [CrossRef]
- Li, Y.; Guo, H. Crosslinked Poly(Methyl Methacrylate) with Perfluorocyclobutyl Aryl Ether Moiety as Crosslinking Unit: Thermally Stable Polymer with High Glass Transition Temperature. RSC Adv. 2020, 10, 1981–1988. [Google Scholar] [CrossRef]
- Aziz, S.B.; Abdullah, O.G.; Brza, M.A.; Azawy, A.K.; Tahir, D.A. Effect of Carbon Nano-Dots (CNDs) on Structural and Optical Properties of PMMA Polymer Composite. Results Phys. 2019, 15, 102776. [Google Scholar] [CrossRef]
- Chriti, D.; Raptopoulos, G.; Brandenburg, B.; Paraskevopoulou, P. Large, Rapid Swelling of High-Cis Polydicyclopentadiene Aerogels Suitable for Solvent-Responsive Actuators. Polymers 2020, 12, 1033. [Google Scholar] [CrossRef]
- Huang, J.; David, A.; Le Gac, P.-Y.; Lorthioir, C.; Coelho, C.; Richaud, E. Thermal Oxidation of Poly(Dicyclopentadiene)–Kinetic Modeling of Double Bond Consumption. Polym. Degrad. Stab. 2019, 166, 258–271. [Google Scholar] [CrossRef]
- Lee, J.J.L.; Andriyana, A.; Ang, B.C.; Huneau, B.; Verron, E. Electrospun PMMA Polymer Blend Nanofibrous Membrane: Electrospinability, Surface Morphology and Mechanical Response. Mater. Res. Express 2018, 5, 065311. [Google Scholar] [CrossRef]
- Kovačič, S.; Slugovc, C. Ring-Opening Metathesis Polymerisation Derived Poly(Dicyclopentadiene) Based Materials. Mater. Chem. Front. 2020, 4, 2235–2255. [Google Scholar] [CrossRef]
Wavenumbers | 1730/1609 | 1730/1582 | 970/1582 | 970/1730 |
---|---|---|---|---|
Uncut Mat | - | - | - | 0.43 |
Freshly cut mat | 0.43 | 0.63 | 0.83 | 1.32 |
Healed mat | 1.27 | 1.47 | 1.28 | 0.86 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stajcic, I.; Radojevic, V.; Lazarevic, Z.; Curcic, M.; Hadzic, B.; Kojovic, A.; Stajcic, A. Poly(Methyl Methacrylate)-Based Core-Shell Electrospun Fibers: Structural and Morphological Analysis. Coatings 2025, 15, 727. https://doi.org/10.3390/coatings15060727
Stajcic I, Radojevic V, Lazarevic Z, Curcic M, Hadzic B, Kojovic A, Stajcic A. Poly(Methyl Methacrylate)-Based Core-Shell Electrospun Fibers: Structural and Morphological Analysis. Coatings. 2025; 15(6):727. https://doi.org/10.3390/coatings15060727
Chicago/Turabian StyleStajcic, Ivana, Vesna Radojevic, Zorica Lazarevic, Milica Curcic, Branka Hadzic, Aleksandar Kojovic, and Aleksandar Stajcic. 2025. "Poly(Methyl Methacrylate)-Based Core-Shell Electrospun Fibers: Structural and Morphological Analysis" Coatings 15, no. 6: 727. https://doi.org/10.3390/coatings15060727
APA StyleStajcic, I., Radojevic, V., Lazarevic, Z., Curcic, M., Hadzic, B., Kojovic, A., & Stajcic, A. (2025). Poly(Methyl Methacrylate)-Based Core-Shell Electrospun Fibers: Structural and Morphological Analysis. Coatings, 15(6), 727. https://doi.org/10.3390/coatings15060727