Hydrothermal Preparation of Calcium Aluminum Corrosion-Resistant Coatings on AZ91D Magnesium Alloy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation Process
2.3. Characterize
2.4. Evaluation of Corrosion Performance
2.5. Immersion Test
3. Results and Discussion
3.1. Surface Morphology
3.2. Surface Composition Analysis
3.3. Coating Formation Mechanism
3.4. Corrosion Behavior
3.5. Immersion Test
3.6. Adhesion Properties
3.7. Corrosion Behavior Mechanisms
4. Summary
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Aydin, F. Recent advances in mechanical properties of Mg matrix composites: A review. Mater. Sci. Technol. 2024, 40, 339–376. [Google Scholar] [CrossRef]
- Zhang, Z.M.; Yu, J.M.; Xue, Y.; Dong, B.B.; Zhao, X.; Wang, Q. Recent research and development on forming for large magnesium alloy components with high mechanical properties. J. Magnes. Alloys 2023, 11, 4054–4081. [Google Scholar] [CrossRef]
- Yang, H.; Xie, W.L.; Song, J.F.; Dong, Z.H.; Gao, Y.Y.; Jiang, B.; Pan, F.S. Current progress of research on heat-resistant Mg alloys: A review. Int. J. Miner. Metall. Mater. 2024, 31, 1406–1425. [Google Scholar] [CrossRef]
- Zhang, G.Q.; Zhang, S.S.; Song, R.B.; Cai, C.H. Effect of Mg and Si contents on hot-dip 55Al-Zn plating: Experimental and molecular dynamics simulation. Mater. Today Commun. 2023, 35, 106131. [Google Scholar] [CrossRef]
- Kim, S.H.; Jo, H.J.; Lee, S.H.; Lee, M.H. Unique Anti-Corrosion Performance of Al-Mg-Si Film on Steel Plate Formed by Heat Treatment. Sci. Adv. Mater. 2022, 14, 1204–1212. [Google Scholar] [CrossRef]
- Moussa, M.E.; El-Hadad, S.; Nofal, A. Influence of Si Addition on the Microstructure, Hardness and Elevated-Temperature Sliding Wear Behavior of AX53 Magnesium Alloy. Int. J. Met. 2022, 16, 385–398. [Google Scholar] [CrossRef]
- Calderón, H.E.; Hidalgo, R.G.I.; Melgarejo, Z.H.; Suárez, O.M. Effect of AlB2-Mg interaction on the mechanical properties of Al-based composites. Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process. 2010, 527, 2258–2264. [Google Scholar] [CrossRef]
- Ueda, T.; Nagao, M.; Ikeo, N.; Washio, K.; Kinoshita, A.; Kato, A.; Mukai, T. Impact Energy Absorption Capability of Magnesium Alloy Pipe. J. Jpn. Inst. Met. Mater. 2014, 78, 142–148. [Google Scholar] [CrossRef]
- Liu, L.Z.; Chen, X.H.; Pan, F.S. A review on electromagnetic shielding magnesium alloys. J. Magnes. Alloys 2021, 9, 1906–1921. [Google Scholar] [CrossRef]
- Luo, Z.; Chen, X.H.; Song, K.; Liu, C.Q.; Dai, Y.; Zhao, D.; Pan, F.S. Effect of Alloying Element on Electromagnetic Interference Shielding Effectiveness of Binary Magnesium Alloys. Acta Metall. Sin.-Engl. Lett. 2019, 32, 817–824. [Google Scholar] [CrossRef]
- Murugesan, R.; Venkataramana, S.H.; Marimuthu, S.; Anand, P.B.; Nagaraja, S.; Isaac, J.S.; Sudharsan, R.R.; Khan, T.M.Y.; Almakayeel, N.; Islam, S.; et al. Influence of Alloying Materials Al, Cu, and Ca on Microstructures, Mechanical Properties, And Corrosion Resistance of Mg Alloys for Industrial Applications: A Review. ACS Omega 2023, 8, 37641–37653. [Google Scholar] [CrossRef] [PubMed]
- You, F.F.; Liu, X.Y.; Ying, M.W.; Yang, Y.J.; Ke, Y.T.; Shen, Y.; Tong, G.X.; Wu, W.H. In situ generated gas bubble-directed self-assembly of multifunctional MgO-based hybrid foams for highly efficient thermal conduction, microwave absorption, and self-cleaning. Mater. Horiz. 2023, 10, 4609–4625. [Google Scholar] [CrossRef] [PubMed]
- Wei, C.L.; Tan, L.W.; Zhang, Y.C.; Wang, Z.R.; Feng, J.K.; Qian, Y.T. Towards better Mg metal anodes in rechargeable Mg batteries: Challenges, strategies, and perspectives. Energy Stor. Mater. 2022, 52, 299–319. [Google Scholar] [CrossRef]
- Gong, B.S.; Huang, Q.; Xia, G.H.; Habibullah; Wu, J.A.; Guo, C.; Wang, Y.; Yan, Y.G.; Chen, Y.G.; Wu, C.L. Challenges and breakthroughs of Mg-based materials for hydrogen generation by hydrolysis. Int. J. Hydrogen Energy 2025, 105, 1008–1025. [Google Scholar] [CrossRef]
- Costa, V.; Raimondi, L.; Scilabra, S.D.; Lo Pinto, M.; Bellavia, D.; De Luca, A.; Guglielmi, P.; Cusanno, A.; Cattini, L.; Pulsatelli, L.; et al. Effect of Hydrothermal Coatings of Magnesium AZ31 Alloy on Osteogenic Differentiation of hMSCs: From Gene to Protein Analysis. Materials 2025, 18, 1254. [Google Scholar] [CrossRef]
- Han, Q.; Zhang, X.P.; Li, W.; Tian, A.X.; Ma, X.L.; Zhao, Y.; Chen, M.F. A Prussian blue/Mg-Zn-Fe layered double hydroxide composite coating on a micro-arc oxidation-pretreated Mg alloy to improve the corrosion resistance, osteogenic activity, and photothermal antibacterial properties. Mater. Today Commun. 2025, 45, 112263. [Google Scholar] [CrossRef]
- Nagaraja, S.; Anand, P.B.; Mariswamy, M.; Alkahtani, M.Q.; Islam, S.; Khan, M.A.; Khan, W.A.; Bhutto, J.K. Friction stir welding of dissimilar Al-Mg alloys for aerospace applications: Prospects and future potential. Rev. Adv. Mater. Sci. 2024, 63, 20240033. [Google Scholar] [CrossRef]
- Tekumalla, S.; Gupta, M. An insight into ignition factors and mechanisms of magnesium based materials: A review. Mater. Des. 2017, 113, 84–98. [Google Scholar] [CrossRef]
- Oishi, M.; Ichitsubo, T.; Okamoto, S.; Toyoda, S.; Matsubara, E.; Nohira, T.; Hagiwara, R. Electrochemical Behavior of Magnesium Alloys in Alkali Metal-TFSA Ionic Liquid for Magnesium-Battery Negative Electrode. J. Electrochem. Soc. 2014, 161, A943–A947. [Google Scholar] [CrossRef]
- Lv, Y.Z.; Liu, M.; Xu, Y.; Cao, D.X.; Feng, J.; Wu, R.Z.; Zhang, M.L. The electrochemical behaviors of Mg-8Li-0.5Y and Mg-8Li-1Y alloys in sodium chloride solution. J. Power Sourc. 2013, 239, 265–268. [Google Scholar] [CrossRef]
- Ouyang, Y.B.; Guo, E.Y.; Chen, X.B.; Kang, H.J.; Chen, Z.N.; Wang, T.M. Recent progress in protective coatings against corrosion upon magnesium-lithium alloys: A critical review. J. Magnes. Alloys 2024, 12, 3967–3995. [Google Scholar] [CrossRef]
- Esmaily, M.; Svensson, J.E.; Fajardo, S.; Birbilis, N.; Frankel, G.S.; Virtanen, S.; Arrabal, R.; Thomas, S.; Johansson, L.G. Fundamentals and advances in magnesium alloy corrosion. Prog. Mater. Sci. 2017, 89, 92–193. [Google Scholar] [CrossRef]
- Hsiao, W.L.; Chu, P.W. Fabrication of Vanadate-Exchanged Electrodeposited Zn-Al Layered Double Hydroxide (LDH) Coating on a ZX21 Mg Alloy to Improve the Corrosion Resistance. Coatings 2024, 14, 1047. [Google Scholar] [CrossRef]
- Han, X.; Wang, Y.; Ma, J.X.; Ma, X.L. Corrosion Resistance and In Vitro Biological Properties of TiO2 on MAO-Coated AZ31 Magnesium Alloy via ALD. Coatings 2024, 14, 1198. [Google Scholar] [CrossRef]
- Di Egidio, G.; Tonelli, L.; Morri, A.; Boromei, I.; Shashkov, P.; Martini, C. Influence of Anodizing by Electro-Chemical Oxidation on Fatigue and Wear Resistance of the EV31A-T6 Cast Magnesium Alloy. Coatings 2023, 13, 62. [Google Scholar] [CrossRef]
- Li, L.Y.; Cui, L.Y.; Liu, B.; Zeng, R.C.; Chen, X.B.; Li, S.Q.; Wang, Z.L.; Han, E.H. Corrosion resistance of glucose-induced hydrothermal calcium phosphate coating on pure magnesium. Appl. Surf. Sci. 2019, 465, 1066–1077. [Google Scholar] [CrossRef]
- Kotoka, R.; Yamoah, N.K.; Mensah-Darkwa, K.; Moses, T.; Kumar, D. Electrochemical corrosion behavior of silver doped tricalcium phosphate coatings on magnesium for biomedical application. Surf. Coat. Technol. 2016, 292, 99–109. [Google Scholar] [CrossRef]
- Xie, J.S.; Zhang, J.H.; Liu, S.J.; Li, Z.H.; Zhang, L.; Wu, R.Z.; Hou, L.G.; Zhang, M.L. Hydrothermal Synthesis of Protective Coating on Mg Alloy for Degradable Implant Applications. Coatings 2019, 9, 160. [Google Scholar] [CrossRef]
- Wang, X.G.; Yan, L.C.; Gao, K.W.; Li, P.C.; Hao, J.J. Enhancing the Corrosion Resistance of ZnAl-LDHs Films on AZ91D Magnesium Alloys by Designing Surface Roughness. Coatings 2023, 13, 724. [Google Scholar] [CrossRef]
- Yigit, O.; Gurgenc, T.; Dikici, B.; Kaseem, M.; Boehlert, C.; Arslan, E. Surface Modification of Pure Mg for Enhanced Biocompatibility and Controlled Biodegradation: A Study on Graphene Oxide (GO)/Strontium Apatite (SrAp) Biocomposite Coatings. Coatings 2023, 13, 890. [Google Scholar] [CrossRef]
- Khan, M.A.; Safira, A.R.; Aadil, M.; Kaseem, M. Development of anti-corrosive coating on AZ31 Mg alloy modified by MOF/LDH/PEO hybrids. J. Magnes. Alloys 2024, 12, 586–607. [Google Scholar] [CrossRef]
- Zhang, J.M.; Lian, D.D.; Hou, A.R.; Wang, Z.H.; Zhang, M.C.; Wu, J.W.; Wang, C.C. Comparative Study on Microstructure, Corrosion Morphology, and Friction Wear Properties of Layered Double Hydroxide/Steam Coating Composite Coatings on Mg-Li Alloy. Adv. Eng. Mater. 2024, 26, 2400058. [Google Scholar] [CrossRef]
- Liu, L.; Lei, J.L.; Li, L.J.; Zhang, X.P.; Li, N.B.; Pan, F.S. Constructing Colorful Surfaces with Mechanical Robustness for Magnesium Alloys via a Reagent-Free Method. ACS Appl. Mater. Interfaces 2020, 12, 48206–48215. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.Y.; Jia, C.X.; Duan, Y.Z. Study on Corrosion Resistance of Alkali-Heat Modified Magnesium Alloy Surface. Met. Mater. Int. 2023, 29, 1638–1651. [Google Scholar] [CrossRef]
- Yao, Z.H.; Wang, D.J.; Xu, N.; Du, C.S.; Feng, Y.F.; Qi, Y.J. Phosphate and humic acid inhibit corrosion of green-synthesized nano-iron particles to remove Cr(VI) and facilitate their cotransport. Chem. Eng. J. 2022, 450, 136415. [Google Scholar] [CrossRef]
- Amala, A.; Franco, P.A.; Binoj, J.S.; Shemin, A.A. Mechanical, morphological and water intake behavior of Mg-Si integrated carbon hybrid composite for marine deckhouse. Rev. Metal. 2023, 59, e246. [Google Scholar] [CrossRef]
- Wang, Y.; Xiao, W.X.; Ma, K.; Dai, C.E.; Wang, D.Q.; Wang, J.F.; Pan, F.S. Towards development of anticorrosive CaCO3-coated passive layer on Mg alloy with ultrasound-assisted electrodeposition. Corros. Sci. 2023, 224, 111546. [Google Scholar] [CrossRef]
- Hou, R.Q.; Li, Y.Q.; Jiang, P.L.; Zhu, S.J.; Wang, L.G.; Guan, S.K. The regulation of organic molecules to the morphology and corrosion protection ability of CaCO3 coating on biomedical MgZnCa alloy. Surf. Coat. Technol. 2024, 478, 130425. [Google Scholar] [CrossRef]
- Zhang, J.M.; Li, J.C.; Hou, A.R.; Lian, D.D.; Zhang, M.C.; Wang, Z.H.; Zhang, T. A comparative study and optimization of corrosion resistance of Mg-Al layered double hydroxides films at different hydrothermal temperatures on LA103Z Mg-Li alloy. Mater. Corros. 2023, 74, 597–607. [Google Scholar] [CrossRef]
- ASTM G31-72(2004); Standard Practice for Laboratory Immersion Corrosion Testing of Metals. ASTM International: West Conshohocken, PA, USA, 2004.
- Suchanek, W.L. Hydrothermal Synthesis of Alpha Alumina (α-Al2O3) Powders: Study of the Processing Variables and Growth Mechanisms. J. Am. Ceram. Soc. 2010, 93, 399–412. [Google Scholar] [CrossRef]
- Zhao, Y.; Tian, A.X.; Wang, W.; Chen, Y.P.; Li, W.; Liu, W.; Chen, M.F. The Effects of Reaction Parameters on the Corrosion Resistance of an Mg-Al Hydroxide Coating via in Situ Growth on a Biomedical Magnesium Alloy. Coatings 2022, 12, 1388. [Google Scholar] [CrossRef]
- Li, Q.Y.; Lu, H.; Cui, J.; An, M.Z.; Li, D.Y. Understanding the low corrosion potential and high corrosion resistance of nano-zinc electrodeposit based on electron work function and interfacial potential difference. RSC Adv. 2016, 6, 97606–97612. [Google Scholar] [CrossRef]
- Heakal, F.E.T.; Fekry, A.M.; Fatayerji, M.Z. Influence of halides on the dissolution and passivation behavior of AZ91D magnesium alloy in aqueous solutions. Electrochim. Acta 2009, 54, 1545–1557. [Google Scholar] [CrossRef]
- Hoche, H.; Schmidt, J.; Gross, S.; Trossmann, T.; Berger, C. PVD coating and substrate pretreatment concepts for corrosion and wear protection of magnesium alloys. Surf. Coat. Technol. 2011, 205, S145–S150. [Google Scholar] [CrossRef]
- Huang, L.N.; Luo, Q.; He, Y. Assessment of Corrosion Protection Performance of FeOOH/Fe3O4/C Composite Coatings Formed In Situ on the Surface of Fe Metal in Air-Saturated 3.5 wt.% NaCl Solution. Materials 2023, 16, 224. [Google Scholar] [CrossRef]
- Fischer, D.A.; Vargas, I.T.; Pizarro, G.E.; Armijo, F.; Walczak, M. The effect of scan rate on the precision of determining corrosion current by Tafel extrapolation: A numerical study on the example of pure Cu in chloride containing medium. Electrochim. Acta 2019, 313, 457–467. [Google Scholar] [CrossRef]
- ASTM-D3359-23; Standard Test Methods for Rating Adhesion by Tape Test. ASTM International: West Conshohocken, PA, USA, 2023.
- ISO 2409:2020; Paints and Varnishes—Cross-Cut Test. ISO: Geneva, Switzerland, 2020.
- Wang, Y.C.; Liu, B.Y.; Zhao, X.A.; Zhang, X.H.; Miao, Y.C.; Yang, N.; Yang, B.; Zhang, L.Q.; Kuang, W.J.; Li, J.; et al. Turning a native or corroded Mg alloy surface into an anti-corrosion coating in excited CO2. Nat. Commun. 2018, 9, 4058. [Google Scholar] [CrossRef]
- Zhu, Y.Y.; Zhao, Q.; Zhang, Y.H.; Wu, G.M. Hydrothermal synthesis of protective coating on magnesium alloy using de-ionized water. Surf. Coat. Technol. 2012, 206, 2961–2966. [Google Scholar] [CrossRef]
Sample | RS (Ω cm2) | Rf (Ω cm2) | CPEdl (μFcm−2·s(a−1)) | Rct (Ω cm2) |
---|---|---|---|---|
Substrate | 6.35 | - | 45 | 765 |
LDH-73 | 188.8 | 2.1835 × 105 | 0.89445 | 3.0782 × 106 |
Coatings | Icorr (μA/cm2) | Ecorr (V vs. Ag/AgCl) | η (%) |
---|---|---|---|
LDH-53 | 6.7599 × 10−8 | −0.38819 | 0.0015634 |
LDH-63 | 1.856 × 10−8 | −0.43459 | 0.00039361 |
LDH-64 | 2.4895 × 10−8 | −0.28181 | 0.00052798 |
LDH-73 | 7.3719 × 10−8 | −0.25245 | 0.0014364 |
LDH-74 | 3.3724 × 10−8 | −0.47287 | 0.00071521 |
Substrate | 3.2973 × 10−5 | −1.4924 | 0.69929 |
Method | Corrosion Current Density (μA/cm2) | Coating Thickness (μm) |
---|---|---|
Hydrothermal Method | 0.0000007 | 30–70 |
Anodization | 0.008 | 8–12 |
Electrophoretic Deposition | 0.002 | 12–18 |
Micro-Arc Oxidation | 0.003 | 24–40 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tan, Q.; Zhang, Y.; Jiang, M.; Zhu, J. Hydrothermal Preparation of Calcium Aluminum Corrosion-Resistant Coatings on AZ91D Magnesium Alloy. Coatings 2025, 15, 722. https://doi.org/10.3390/coatings15060722
Tan Q, Zhang Y, Jiang M, Zhu J. Hydrothermal Preparation of Calcium Aluminum Corrosion-Resistant Coatings on AZ91D Magnesium Alloy. Coatings. 2025; 15(6):722. https://doi.org/10.3390/coatings15060722
Chicago/Turabian StyleTan, Qingrong, Ying Zhang, Min Jiang, and Jiyuan Zhu. 2025. "Hydrothermal Preparation of Calcium Aluminum Corrosion-Resistant Coatings on AZ91D Magnesium Alloy" Coatings 15, no. 6: 722. https://doi.org/10.3390/coatings15060722
APA StyleTan, Q., Zhang, Y., Jiang, M., & Zhu, J. (2025). Hydrothermal Preparation of Calcium Aluminum Corrosion-Resistant Coatings on AZ91D Magnesium Alloy. Coatings, 15(6), 722. https://doi.org/10.3390/coatings15060722