PVTF Nanoparticles Coatings with Tunable Microdomain Potential for Enhanced Osteogenic Differentiation
Abstract
1. Introduction
2. Materials and Methods
2.1. Preparation of PVTF NP Coatings
2.2. Characterization
2.3. In Vitro Cell Behavior Evaluation
2.3.1. Cell Extraction and Cell Culture
2.3.2. Cell Viability Assay
2.3.3. ALP Activity Assay
2.4. Statistical Analysis
3. Results and Discussion
3.1. Topography and Composition
3.2. Nanoscale Piezo- and Ferro-Electricity
3.3. Micro-Domain Potential of PVTF NP Coatings
3.4. Biocompatibility and Osteogenesis of Micro-Domain Potential
4. Conclusions
- Enhanced piezoelectric properties: Thermal annealing increased β-phase fraction from 79.5% to 82.2% and crystallinity from 31.9% to 47.3%.
- Effective dipole alignment: Corona poling enhances the piezoelectric coefficient d33 from 49.5 pm/V to 88.0 pm/V while generating localized surface potential.
- Significant potential modulation: The poled surfaces showed a −389 mV reduction in surface potential compared to unpoled controls.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
PVTF | Poly(vinylidene fluoride-trifluoroethylene) |
NP | nanoparticle |
BMSC | bone marrow mesenchymal stem cell |
PVTF-UN | unpoled PVTF NP coating |
PVTF-LP | low-poled PVTF NP coating |
PVTF-HP | high-poled PVTF NP coating |
References
- Murphy, W.L.; McDevitt, T.C.; Engler, A.J. Materials as stem cell regulators. Nat. Mater. 2014, 13, 547–557. [Google Scholar] [CrossRef] [PubMed]
- Rahmati, M.; Silva, E.A.; Reseland, J.E.; Heyward, C.A.; Haugen, H.J. Biological responses to physicochemical properties of biomaterial surface. Chem. Soc. Rev. 2020, 49, 5178–5224. [Google Scholar] [CrossRef] [PubMed]
- Dalby, M.J.; Gadegaard, N.; Oreffo, R.O.C. Harnessing nanotopography and integrin–matrix interactions to influence stem cell fate. Nat. Mater. 2014, 13, 558–569. [Google Scholar] [CrossRef]
- Pedrosa, C.R.; Arl, D.; Grysan, P.; Khan, I.; Durrieu, S.; Krishnamoorthy, S.; Durrieu, M.-C. Controlled Nanoscale Topographies for Osteogenic Differentiation of Mesenchymal Stem Cells. ACS Appl. Mater. Interfaces 2019, 11, 8858–8866. [Google Scholar] [CrossRef]
- Zhang, F.; Yan, X.; Wu, M.; Chen, Y.; Zhao, H.; Zhang, C.; Dang, P.; Wei, L.; Zhu, F.; Chen, Y.; et al. Modulating Lineage Specification in Stem Cell Differentiation via Bioelectrical Stimulation Intensity Matching. Adv. Mater. Interfaces 2024, 11, 2300609. [Google Scholar] [CrossRef]
- Szewczyk, P.K.; Metwally, S.; Karbowniczek, J.E.; Marzec, M.M.; Stodolak-Zych, E.; Gruszczyński, A.; Bernasik, A.; Stachewicz, U. Surface-Potential-Controlled Cell Proliferation and Collagen Mineralization on Electrospun Polyvinylidene Fluoride (PVDF) Fiber Scaffolds for Bone Regeneration. ACS Biomater. Sci. Eng. 2019, 5, 582–593. [Google Scholar] [CrossRef] [PubMed]
- Guo, S.; Zhu, X.; Li, M.; Shi, L.; Ong, J.L.T.; Jańczewski, D.; Neoh, K.G. Parallel Control over Surface Charge and Wettability Using Polyelectrolyte Architecture: Effect on Protein Adsorption and Cell Adhesion. ACS Appl. Mater. Interfaces 2016, 8, 30552–30563. [Google Scholar] [CrossRef]
- Xie, W.; Wei, X.; Kang, H.; Jiang, H.; Chu, Z.; Lin, Y.; Hou, Y.; Wei, Q. Static and Dynamic: Evolving Biomaterial Mechanical Properties to Control Cellular Mechanotransduction. Adv. Sci. 2023, 10, 2204594. [Google Scholar] [CrossRef]
- Zheng, T.; Pang, Y.; Zhang, D.; Wang, Y.; Zhang, X.; Leng, H.; Yu, Y.; Yang, X.; Cai, Q. Integrated Piezoelectric/Conductive Composite Cryogel Creates Electroactive Microenvironment for Enhanced Bone Regeneration. Adv. Healthc. Mater. 2023, 12, 2300927. [Google Scholar] [CrossRef]
- Liu, W.; Zhang, F.; Yan, Y.; Zhang, C.; Zhao, H.; Heng, B.C.; Huang, Y.; Shen, Y.; Zhang, J.; Chen, L.; et al. Remote Tuning of Built-In Magnetoelectric Microenvironment to Promote Bone Regeneration by Modulating Cellular Exposure to Arginylglycylaspartic Acid Peptide. Adv. Funct. Mater. 2021, 31, 2006226. [Google Scholar] [CrossRef]
- Metwally, S.; Stachewicz, U. Surface potential and charges impact on cell responses on biomaterials interfaces for medical applications. Mater. Sci. Eng., C 2019, 104, 109883. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Wan, X.; Wang, Z.L.; Li, L. Electroactive Biomaterials and Systems for Cell Fate Determination and Tissue Regeneration: Design and Applications. Adv. Mater. 2021, 33, 2007429. [Google Scholar] [CrossRef]
- Chen, L.; Yang, J.; Cai, Z.; Huang, Y.; Xiao, P.; Wang, J.; Wang, F.; Huang, W.; Cui, W.; Hu, N. Electroactive Biomaterials Regulate the Electrophysiological Microenvironment to Promote Bone and Cartilage Tissue Regeneration. Adv. Funct. Mater. 2024, 34, 2314079. [Google Scholar] [CrossRef]
- Tofail, S.A.M.; Bauer, J. Electrically Polarized Biomaterials. Adv. Mater. 2016, 28, 5470–5484. [Google Scholar] [CrossRef] [PubMed]
- Nain, A.; Chakraborty, S.; Barman, S.R.; Gavit, P.; Indrakumar, S.; Agrawal, A.; Lin, Z.-H.; Chatterjee, K. Progress in the development of piezoelectric biomaterials for tissue remodeling. Biomaterials 2024, 307, 122528. [Google Scholar] [CrossRef] [PubMed]
- Tang, B.; Zhang, B.; Zhuang, J.; Wang, Q.; Dong, L.; Cheng, K.; Weng, W. Surface potential-governed cellular osteogenic differentiation on ferroelectric polyvinylidene fluoride trifluoroethylene films. Acta Biomater. 2018, 74, 291–301. [Google Scholar] [CrossRef]
- Zhou, Z.; Wang, J.; Zhang, J.; Duan, X.; Lin, W.; Cheng, K.; Weng, W.; Chen, Z. Polarized P(VDF-TrFE) film promotes skin wound healing through controllable surface potential. Colloids Surf. B Biointerfaces 2023, 221, 112980. [Google Scholar] [CrossRef]
- Li, J.; Xie, Y.; Liu, G.; Bahatibieke, A.; Zhao, J.; Kang, J.; Sha, J.; Zhao, F.; Zheng, Y. Bioelectret Materials and Their Bioelectric Effects for Tissue Repair: A Review. ACS Appl. Mater. Interfaces 2024, 16, 38852–38879. [Google Scholar] [CrossRef]
- Hinderer, S.; Layland, S.L.; Schenke-Layland, K. ECM and ECM-like materials—Biomaterials for applications in regenerative medicine and cancer therapy. Adv. Drug Deliv. Rev. 2016, 97, 260–269. [Google Scholar] [CrossRef]
- Dalby, M.J.; Gadegaard, N.; Tare, R.; Andar, A.; Riehle, M.O.; Herzyk, P.; Wilkinson, C.D.W.; Oreffo, R.O.C. The control of human mesenchymal cell differentiation using nanoscale symmetry and disorder. Nat. Mater. 2007, 6, 997–1003. [Google Scholar] [CrossRef]
- Lü, D.; Luo, C.; Zhang, C.; Li, Z.; Long, M. Differential regulation of morphology and stemness of mouse embryonic stem cells by substrate stiffness and topography. Biomaterials 2014, 35, 3945–3955. [Google Scholar] [CrossRef] [PubMed]
- Yi, Y.; Lin, W.; Wu, C.; Cheng, K. Polypyrrole/titanium dioxide composite nanodots coatings with light-controllable micro-domain potential for biomedical application. Surf. Coat. Technol. 2025, 498, 131855. [Google Scholar] [CrossRef]
- Khlusov, I.A.; Dekhtyar, Y.; Sharkeev, Y.P.; Pichugin, V.F.; Khlusova, M.Y.; Polyaka, N.; Tyulkin, F.; Vendinya, V.; Legostaeva, E.V.; Litvinova, L.S.; et al. Nanoscale Electrical Potential and Roughness of a Calcium Phosphate Surface Promotes the Osteogenic Phenotype of Stromal Cells. Materials 2018, 11, 978. [Google Scholar] [CrossRef]
- Cui, Q.; Zheng, X.; Bai, Y.; Guo, Y.; Liu, S.; Lu, Y.; Liu, L.; Song, J.; Liu, Y.; Heng, B.C.; et al. Manipulation of Surface Potential Distribution Enhances Osteogenesis by Promoting Pro-Angiogenic Macrophage Polarization via Activation of the PI3K-Akt Signaling Pathway. Adv. Sci. 2025, 12, 2414278. [Google Scholar] [CrossRef]
- Sun, X.; Guo, Y.; Zheng, X.; Bai, Y.; Lu, Y.; Yang, X.; Cai, Z.; Xu, E.; He, Y.; Heng, B.C.; et al. Optimizing the Electrical Microenvironment Provided by 3D Micropillar Topography on a Piezoelectric BaTiO3 Substrate to Enhance Osseointegration. Adv. Mater. 2025, 37, 2414161. [Google Scholar] [CrossRef] [PubMed]
- Bai, Y.; Zheng, X.; Zhong, X.; Cui, Q.; Zhang, S.; Wen, X.; Heng, B.C.; He, S.; Shen, Y.; Zhang, J.; et al. Manipulation of Heterogeneous Surface Electric Potential Promotes Osteogenesis by Strengthening RGD Peptide Binding and Cellular Mechanosensing. Adv. Mater. 2023, 35, 2209769. [Google Scholar] [CrossRef]
- Xiao, Z.; Dong, Q.; Sharma, P.; Yuan, Y.; Mao, B.; Tian, W.; Gruverman, A.; Huang, J. Synthesis and Application of Ferroelectric P(VDF-TrFE) Nanoparticles in Organic Photovoltaic Devices for High Efficiency. Adv. Energy Mater. 2013, 3, 1581–1588. [Google Scholar] [CrossRef]
- Mishra, H.K.; Gupta, V.; Roy, K.; Babu, A.; Kumar, A.; Mandal, D. Revisiting of δ−PVDF nanoparticles via phase separation with giant piezoelectric response for the realization of self-powered biomedical sensors. Nano Energy 2022, 95, 107052. [Google Scholar] [CrossRef]
- Gregorio, R., Jr.; Cestari, M. Effect of crystallization temperature on the crystalline phase content and morphology of poly(vinylidene fluoride). J. Polym. Sci. Part B Polym. Phys. 1994, 32, 859–870. [Google Scholar] [CrossRef]
- Mahdi, R.I.; Gan, W.C.; Majid, W.H.A. Hot Plate Annealing at a Low Temperature of a Thin Ferroelectric P(VDF-TrFE) Film with an Improved Crystalline Structure for Sensors and Actuators. Sensors 2014, 14, 19115–19127. [Google Scholar] [CrossRef]
- Zhang, C.; Liu, W.; Cao, C.; Zhang, F.; Tang, Q.; Ma, S.; Zhao, J.; Hu, L.; Shen, Y.; Chen, L. Modulating Surface Potential by Controlling the β Phase Content in Poly(vinylidene fluoridetrifluoroethylene) Membranes Enhances Bone Regeneration. Adv. Healthc. Mater. 2018, 7, 1701466. [Google Scholar] [CrossRef] [PubMed]
- Silverstein, T.P. The Real Reason Why Oil and Water Don’t Mix. J. Chem. Educ. 1998, 75, 116. [Google Scholar] [CrossRef]
- Park, Y.J.; Bae, I.s.; Kang, S.J.; Chang, J.; Park, C. Control of thin ferroelectric polymer films for non-volatile memory applications. IEEE Trns. Dielectr. Electr. Insul. 2010, 17, 1135–1163. [Google Scholar] [CrossRef]
- Martins, P.; Lopes, A.C.; Lanceros-Mendez, S. Electroactive phases of poly(vinylidene fluoride): Determination, processing and applications. Prog. Polym. Sci. 2014, 39, 683–706. [Google Scholar] [CrossRef]
- Cai, X.; Lei, T.; Sun, D.; Lin, L. A critical analysis of the α, β and γ phases in poly(vinylidene fluoride) using FTIR. RSC Adv. 2017, 7, 15382–15389. [Google Scholar] [CrossRef]
- Mireja, S.; Khakhar, D.V. Methods to characterize the crystal polymorphs of polyvinylidene fluoride using Fourier transform infrared spectroscopy. Polym. Eng. Sci. 2023, 63, 2857–2870. [Google Scholar] [CrossRef]
- Bormashenko, Y.; Pogreb, R.; Stanevsky, O.; Bormashenko, E. Vibrational spectrum of PVDF and its interpretation. Polym. Test. 2004, 23, 791–796. [Google Scholar] [CrossRef]
- Meng, N.; Zhu, X.; Mao, R.; Reece, M.J.; Bilotti, E. Nanoscale interfacial electroactivity in PVDF/PVDF-TrFE blended films with enhanced dielectric and ferroelectric properties. J. Mater. Chem. C 2017, 5, 3296–3305. [Google Scholar] [CrossRef]
- Kim, J.; Lee, J.H.; Ryu, H.; Lee, J.-H.; Khan, U.; Kim, H.; Kwak, S.S.; Kim, S.-W. High-Performance Piezoelectric, Pyroelectric, and Triboelectric Nanogenerators Based on P(VDF-TrFE) with Controlled Crystallinity and Dipole Alignment. Adv. Funct. Mater. 2017, 27, 1700702. [Google Scholar] [CrossRef]
- Vasudevan, R.K.; Balke, N.; Maksymovych, P.; Jesse, S.; Kalinin, S.V. Ferroelectric or non-ferroelectric: Why so many materials exhibit “ferroelectricity” on the nanoscale. Appl. Phys. Rev. 2017, 4, 021302. [Google Scholar] [CrossRef]
- Denning, D.; Guyonnet, J.; Rodriguez, B.J. Applications of piezoresponse force microscopy in materials research: From inorganic ferroelectrics to biopiezoelectrics and beyond. Int. Mater. Rev. 2016, 61, 46–70. [Google Scholar] [CrossRef]
- Aronov, D.; Molotskii, M.; Rosenman, G. Charge-induced wettability modification. Appl. Phys. Lett. 2007, 90, 104104. [Google Scholar] [CrossRef]
- Quilliet, C.; Berge, B. Electrowetting: A recent outbreak. Curr. Opin. Colloid Interface Sci. 2001, 6, 34–39. [Google Scholar] [CrossRef]
- Ribeiro, C.; Moreira, S.; Correia, V.; Sencadas, V.; Rocha, J.G.; Gama, F.M.; Gómez Ribelles, J.L.; Lanceros-Méndez, S. Enhanced proliferation of pre-osteoblastic cells by dynamic piezoelectric stimulation. RSC Adv. 2012, 2, 11504–11509. [Google Scholar] [CrossRef]
- Nardone, G.; Oliver-De La Cruz, J.; Vrbsky, J.; Martini, C.; Pribyl, J.; Skládal, P.; Pešl, M.; Caluori, G.; Pagliari, S.; Martino, F.; et al. YAP regulates cell mechanics by controlling focal adhesion assembly. Nat. Commun. 2017, 8, 15321. [Google Scholar] [CrossRef] [PubMed]
- Kanchanawong, P.; Calderwood, D.A. Organization, dynamics and mechanoregulation of integrin-mediated cell–ECM adhesions. Nat. Rev. Mol. Cell Biol. 2023, 24, 142–161. [Google Scholar] [CrossRef]
- Chen, N.; Danalache, M.; Liang, C.; Alexander, D.; Umrath, F. Mechanosignaling in Osteoporosis: When Cells Feel the Force. Int. J. Mol. Sci. 2025, 26, 4007. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, M.; Wang, P.; Zheng, K.; Wang, X.; Xie, W.; Pan, X.; Shen, R.; Liu, R.; Ding, J.; et al. Nanoscale distribution of bioactive ligands on biomaterials regulates cell mechanosensing through translocation of actin into the nucleus. Proc. Natl. Acad. Sci. USA 2025, 122, e2501264122. [Google Scholar] [CrossRef]
- Sun, Z.; Costell, M.; Fässler, R. Integrin activation by talin, kindlin and mechanical forces. Nat. Cell Biol. 2019, 21, 25–31. [Google Scholar] [CrossRef]
- Watt, F.M.; Huck, W.T.S. Role of the extracellular matrix in regulating stem cell fate. Nat. Rev. Mol. Cell Biol. 2013, 14, 467–473. [Google Scholar] [CrossRef]
- Li, X.; Heng, B.C.; Bai, Y.; Wang, Q.; Gao, M.; He, Y.; Zhang, X.; Deng, X.; Zhang, X. Electrical charge on ferroelectric nanocomposite membranes enhances SHED neural differentiation. Bioact. Mater. 2023, 20, 81–92. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yi, Y.; Wu, C.; He, X.; Weng, W.; Lin, W.; Cheng, K. PVTF Nanoparticles Coatings with Tunable Microdomain Potential for Enhanced Osteogenic Differentiation. Coatings 2025, 15, 703. https://doi.org/10.3390/coatings15060703
Yi Y, Wu C, He X, Weng W, Lin W, Cheng K. PVTF Nanoparticles Coatings with Tunable Microdomain Potential for Enhanced Osteogenic Differentiation. Coatings. 2025; 15(6):703. https://doi.org/10.3390/coatings15060703
Chicago/Turabian StyleYi, Yang, Chengwei Wu, Xuzhao He, Wenjian Weng, Weiming Lin, and Kui Cheng. 2025. "PVTF Nanoparticles Coatings with Tunable Microdomain Potential for Enhanced Osteogenic Differentiation" Coatings 15, no. 6: 703. https://doi.org/10.3390/coatings15060703
APA StyleYi, Y., Wu, C., He, X., Weng, W., Lin, W., & Cheng, K. (2025). PVTF Nanoparticles Coatings with Tunable Microdomain Potential for Enhanced Osteogenic Differentiation. Coatings, 15(6), 703. https://doi.org/10.3390/coatings15060703