Self-Healing Anti-Corrosion Coatings: Challenges and Opportunities from Laboratory Breakthroughs to Industrial Realization
1. Introduction
2. Research Progress
- Extrinsic Self-healing
- Intrinsic Self-healing
3. Challenges
- Limitations in Material Design and Healing Mechanisms
- Discrepancy Between Healing Efficiency and Practical Requirements
- Challenges in Environmental Adaptability and Long-Term Durability
4. Outlook
- Material Design Innovations
- Enhanced Healing Efficiency
- Environmental Adaptability
- Towards Integrated Performance
Funding
Conflicts of Interest
References
- White, S.R.; Sottos, N.R.; Geubelle, P.H.; Moore, J.S.; Kessler, M.R.; Sriram, S.R.; Brown, E.N.; Viswanathan, S. Autonomic healing of polymer composites. Nature 2001, 409, 794–797. [Google Scholar] [CrossRef] [PubMed]
- Han, R.; He, H.; Liu, X.; Zhao, L.; Yang, Y.; Liu, C.B.; Zeng, R.C. Anti–corrosion and self-healing coatings with polyaniline/epoxy copolymer–urea–formaldehyde microcapsules for rusty steel sheets. J. Colloid Interface Sci. 2022, 616, 605–617. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Wang, X. Preparation of microcapsules with IPDI monomer and isocyanate prepolymer as self-healing agent and their application in self-healing materials. Polymer 2022, 262, 125478. [Google Scholar] [CrossRef]
- Fattah-Alhosseini, A.; Fardosi, A.; Karbasi, M.; Kaseem, M. Advancements in enhancing corrosion protection of Mg alloys: A comprehensive review on the synergistic effects of combining inhibitors with PEO coating. J. Magnes. Alloys 2024, 12, 465–489. [Google Scholar] [CrossRef]
- Fu, X.; Du, W.; Dou, H.; Fan, Y.; Xu, J.; Tian, L.; Zhao, J.; Ren, L. Nanofiber Composite Coating with Self-Healing and Active Anticorrosive Performances. ACS Appl. Mater. Interfaces 2021, 13, 57880–57892. [Google Scholar] [CrossRef]
- Zhang, N.; Zhou, B.; Liu, Y.; Yang, B.; Zheng, H.; Wu, Y. Dual-functional anti-corrosion coatings with surface hydrophobicity and internal smart-releasing Ce3+ loaded in bentonite on carbon steel. J. Mater. Res. Technol. 2023, 22, 879–894. [Google Scholar] [CrossRef]
- Zhou, X.; Dong, Q.; Wei, D.; Bai, J.; Xue, F.; Zhang, B.; Ba, Z.; Wang, Z. Smart corrosion inhibitors for controlled release: A review, Corrosion Engineering. Sci. Technol. 2023, 58, 190–204. [Google Scholar]
- Yang, Z.; Yang, Y.; Zhao, H.; Miao, C. Preparation and controlled-release properties of a dual-response acidizing corrosion inhibitor. RSC Adv. 2022, 12, 27055–27063. [Google Scholar]
- Li, C.-H.; Wang, C.; Keplinger, C.; Zuo, J.-L.; Jin, L.; Sun, Y.; Zheng, P.; Cao, Y.; Lissel, F.; Linder, C.; et al. A highly stretchable autonomous self-healing elastomer. Nat. Chem. 2016, 8, 618–624. [Google Scholar] [CrossRef]
- Zhang, Z.; Ghezawi, N.; Li, B.; Ge, S.; Zhao, S.; Saito, T.; Hun, D.; Cao, P. Autonomous Self-Healing Elastomers with Unprecedented Adhesion Force. Adv. Funct. Mater. 2020, 31, 2006298. [Google Scholar] [CrossRef]
- Nan, X.N.; Min, X.X.; Junhu, W.; Zhi, R.M.; Qiu, Z.M. A seawater triggered dynamic coordinate bond and its application for underwater self-healing and reclaiming of lipophilic polymer. Chem. Sci. 2016, 7, 2736–2742. [Google Scholar]
- Xu, S.B.; Sheng, D.K.; Liu, X.D.; Ji, F.C.; Zhou, Y.; Dong, L.; Wu, H.H.; Yang, Y.M. A seawater-assisted self-healing metal-catechol polyurethane with tunable mechanical properties. Polym. Int. 2019, 68, 1084–1090. [Google Scholar] [CrossRef]
- Sun, J.; Duan, J.; Liu, X.; Dong, X.; Zhang, Y.; Liu, C.; Hou, B. Environmentally benign smart self-healing silicone-based coating with dual antifouling and anti-corrosion properties. Appl. Mater. Today 2022, 28, 101551. [Google Scholar] [CrossRef]
- Liu, S.; Li, Z.; Yu, Q.; Qi, Y.; Peng, Z.; Liang, J. Dual self-healing composite coating on magnesium alloys for corrosion protection. Chem. Eng. J. 2021, 424, 130551. [Google Scholar] [CrossRef]
- Xu, Y.; Liu, R.; Shao, Z.; Chen, L.; Wei, W.; Dong, S.; Wang, H. Synergistic effect of 8-HQ@CeO2 for enhanced corrosion resistance of self-healing polyurethane coating for corrosion protection of mild steel. Prog. Org. Coat. 2023, 186, 108015. [Google Scholar] [CrossRef]
- Trask, R.; Williams, G.; Bond, I. Bioinspired self-healing of advanced composite structures using hollow glass fibres. J. R. Soc. Interface 2006, 4, 363–371. [Google Scholar] [CrossRef]
- Mineo, P.; Barbera, V.; Romeo, G.; Ghezzo, F.; Scamporrino, E.; Spitaleri, F.; Chiacchio, U. Thermally reversible highly cross-linked polymeric materials based on furan/maleimide Diels-Alder adducts. J. Appl. Polym. Sci. 2015, 132, 30. [Google Scholar] [CrossRef]
- Shchukin, D.G.; Zheludkevich, M.; Yasakau, K.; Lamaka, S.; Ferreira, M.G.; Möhwald, H. Layer-by-layer assembled nanocontainers for self-healing corrosion protection. Adv. Mater. 2006, 18, 1672–1678. [Google Scholar] [CrossRef]
- Ghosh, B.; Urban, M.W. Self-Repairing Oxetane-Substituted Chitosan Polyurethane Networks. Science 2009, 323, 1458–1460. [Google Scholar] [CrossRef]
- Dong, Y.; Wu, K.; Yin, Y.; Geng, C.; Zhou, Q. Shape memory self-healing coating based on photothermal effect of PPy@PDA nanoparticles. Synth. Met. 2021, 280, 116869. [Google Scholar] [CrossRef]
- Ding, C.; Xu, J.; Tong, L.; Gong, G.; Jiang, W.; Fu, J. Design and Fabrication of a Novel Stimulus-Feedback Anticorrosion Coating Featured by Rapid Self-Healing Functionality for the Protection of Magnesium Alloy. ACS Appl. Mater. Interfaces 2017, 9, 21034–21047. [Google Scholar] [CrossRef] [PubMed]
- Xiang, Z.; Wang, X.; Jiang, X.; Li, C.; Ding, Y.; Zheng, Q.; Zhou, L.; Zhu, H.; Wang, Q.; Wu, Y.; et al. Bismuth oxyhalides (BiOX (X = Cl, Br, I)) based composites for photocatalytic antibacterial: Modification strategies, antibacterial mechanisms and prospects. J. Environ. Chem. Eng. 2025, 13, 116428. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, W.; Deng, J.; Higazy, S.A.; Selim, M.S.; Jin, H. Self-Healing Anti-Corrosion Coatings: Challenges and Opportunities from Laboratory Breakthroughs to Industrial Realization. Coatings 2025, 15, 620. https://doi.org/10.3390/coatings15060620
Tian W, Deng J, Higazy SA, Selim MS, Jin H. Self-Healing Anti-Corrosion Coatings: Challenges and Opportunities from Laboratory Breakthroughs to Industrial Realization. Coatings. 2025; 15(6):620. https://doi.org/10.3390/coatings15060620
Chicago/Turabian StyleTian, Wei, Jiajia Deng, Shimaa Anwer Higazy, Mohamed Sayed Selim, and Huichao Jin. 2025. "Self-Healing Anti-Corrosion Coatings: Challenges and Opportunities from Laboratory Breakthroughs to Industrial Realization" Coatings 15, no. 6: 620. https://doi.org/10.3390/coatings15060620
APA StyleTian, W., Deng, J., Higazy, S. A., Selim, M. S., & Jin, H. (2025). Self-Healing Anti-Corrosion Coatings: Challenges and Opportunities from Laboratory Breakthroughs to Industrial Realization. Coatings, 15(6), 620. https://doi.org/10.3390/coatings15060620