Evaluation of Microleakage, Tensile Bond Strength, and Adhesive Interface of Bulk Fill, Ormocer, and Alkasite Against Conventional Composite in Caries-Affected Primary Molars
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Carvalho, R.M.; Manso, A.P.; Geraldeli, S.; Tay, F.R.; Pashley, D.H. Durability of Bonds and Clinical Success of Adhesive Restorations. Dent. Mater. 2012, 28, 72–86. [Google Scholar] [CrossRef] [PubMed]
- Jefferies, S.R. Abrasive Finishing and Polishing in Restorative Dentistry: A State-of-the-Art Review. Dent. Clin. N. Am. 2007, 51, 379–397. [Google Scholar] [CrossRef] [PubMed]
- Ghanem, A.Y.; Talaat, D.M.; Essawy, M.M.; Bakry, N. The Effectiveness of Carie-CareTM, Chemomechanical Caries Removal Technique in Primary Teeth: Randomized Controlled Clinical Trial. BMC Oral Health 2023, 23, 882. [Google Scholar] [CrossRef] [PubMed]
- Alshahrani, A.; Abrar, E.; Maawadh, A.M.; Al-Hamdan, R.S.; Almohareb, T.; AlFawaz, Y.; Naseem, M.; Vohra, F.; Abduljabbar, T. Management of Caries Affected Dentin (CAD) with Resin Modified Glass Ionomer Cement (RMGIC) in the Presence of Different Caries Disinfectants and Photosensitizers. Photodiagnosis Photodyn. Ther. 2020, 32, 101978. [Google Scholar] [CrossRef]
- Osiewicz, M.A.; Werner, A.; Roeters, F.J.M.; Kleverlaan, C.J. Wear of Bulk-Fill Resin Composites. Dent. Mater. 2022, 38, 549–553. [Google Scholar] [CrossRef]
- Mosharrafian, S.; Heidari, A.; Rahbar, P. Microleakage of Two Bulk Fill and One Conventional Composite in Class II Restorations of Primary Posterior Teeth. J. Dent. 2017, 14, 123–131. [Google Scholar]
- Paolone, G.; Mandurino, M.; Scotti, N.; Cantatore, G.; Blatz, M.B. Color Stability of Bulk-Fill Compared to Conventional Resin-Based Composites: A Scoping Review. J. Esthet. Restor. Dent. 2023, 35, 657–676. [Google Scholar] [CrossRef]
- Gupta, S.; Vellanki, V.K.; Shetty, V.K.; Kushwah, S.; Goyal, G.; Chandra, S.S. In Vitro Evaluation of Shear Bond Strength of Nanocomposites to Dentin. J. Clin. Diagn. Res. 2015, 9, ZC09–ZC11. [Google Scholar] [CrossRef]
- Mosharrafian, S.; Farahmand, N.; Poorzandpoush, K.; Hosseinipour, Z.S.; Kahforushan, M. In Vitro Microleakage at the Enamel and Dentin Margins of Class II Cavities of Primary Molars Restored with a Bulk-Fill and a Conventional Composite. Clin. Exp. Dent. Res. 2023, 9, 512–517. [Google Scholar] [CrossRef]
- AlQhtani, F.A.B.A.; Abdullah, A.M.; Sainudeen, S.; Batool, R.; Kamran, M.A. Comparison of Marginal Seal and Tensile Bond Strength of an Alkasite, Zircomer, and Bulk Fill Composite to Carious Affected Primary Molars. J. Biomater. Tissue Eng. 2024, 14, 38–44. [Google Scholar] [CrossRef]
- Pirmoradian, M.; Al-Bakhakh, B.A.J.; Behroozibakhsh, M.; Pedram, P. Repairability of Aged Dimethacrylate-Free ORMOCER-Based Dental Composite Resins with Different Surface Roughening Methods and Intermediate Materials. J. Prosthet. Dent. 2024, 131, 1238–1249. [Google Scholar] [CrossRef] [PubMed]
- Sirisha, S.; Vinay, C.; Alla, R.K.; Uloopi, K.; Chaitanya, P.; Chandana, N. Physico-Mechanical Characteristics of Ormocer and Bulk Fill Composite Resin Restorative Materials: An in-Vitro Study. J. Clin. Diagn. Res. 2023, 17, ZC01–ZC04. [Google Scholar] [CrossRef]
- Bordina, G.E.; Lopina, N.P.; Andreev, A.A. Comparative Characteristics of the Chemical Structure of Ormokers and Traditional Composites. Russ. J. Dent. 2022, 26, 503–512. [Google Scholar] [CrossRef]
- Mulgaonkar, A.; de Ataide, I.; Fernandes, M.; Lambor, R. Shear Bond Strength Evaluation of an Alkasite Restorative Material to Three Different Liners with and without Using Adhesive System: An in Vitro Study. J. Conserv. Dent. 2021, 24, 278–282. [Google Scholar] [CrossRef]
- Meshram, P.; Meshram, V.; Palve, D.; Patil, S.; Gade, V.; Raut, A. Comparative Evaluation of Microleakage around Class V Cavities Restored with Alkasite Restorative Material with and without Bonding Agent and Flowable Composite Resin: An in Vitro Study. Indian J. Dent. Res. 2019, 30, 403–407. [Google Scholar] [CrossRef]
- Sulimany, A.M.; Aldowsari, M.K.; Bin Saleh, S.; Alotaibi, S.S.; Alhelal, B.M.; Hamdan, H.M. An In Vitro Assessment of the Shear Bond Strength of Alkasite Restorative Material in Primary Molars Compared with Glass Ionomer and Resin-Modified Glass Ionomer Restorations. Materials 2024, 17, 6230. [Google Scholar] [CrossRef]
- Gupta, M.; Gugnani, N.; Pandit, I. International Caries Detection and Assessment System (ICDAS): A New Concept. Int. J. Clin. Pediatr. Dent. 2011, 4, 93–100. [Google Scholar] [CrossRef]
- Naz, F.; Khan, A.S.; Kader, M.A.; Al Gelban, L.O.S.; Mousa, N.M.A.; Asiri, R.S.H.; Hakeem, A.S. Comparative Evaluation of Mechanical and Physical Properties of a New Bulk-Fill Alkasite with Conventional Restorative Materials. Saudi Dent. J. 2021, 33, 666–673. [Google Scholar] [CrossRef]
- Kalra, S.; Singh, A.; Gupta, M.; Chadha, V. Ormocer: An Aesthetic Direct Restorative Material; An in Vitro Study Comparing the Marginal Sealing Ability of Organically Modified Ceramics and a Hybrid Composite Using an Ormocer-Based Bonding Agent and a Conventional Fifth-Generation Bonding Agent. Contemp. Clin. Dent. 2012, 3, 48–53. [Google Scholar] [CrossRef]
- Alrahlah, A.; Naseem, M.; Tanveer, S.A.; Abrar, E.; Charania, A.; AlRifaiy, M.Q.; Vohra, F. Influence of Disinfection of Caries Effected Dentin with Different Concentration of Silver Diamine Fluoride, Curcumin and Er, Cr:YSGG on Adhesive Bond Strength to Resin Composite. Photodiagnosis Photodyn. Ther. 2020, 32, 102065. [Google Scholar] [CrossRef]
- Aljamhan, A.S.; Alrefeai, M.H.; Alhabdan, A.; Alzehiri, M.H.; Naseem, M.; Vohra, F.; Alkhudhairy, F. Interaction of Zirconium Oxide Nanoparticle Infiltrated Resin Adhesive with Dentin Conditioned by Phosphoric Acid and Er, Cr: YSGG Laser. J. Appl. Biomater. Funct. Mater. 2022, 20, 228080002210873. [Google Scholar] [CrossRef]
- ElBahrawy, E.M.S.; Shebl, E.; Attia, R. The Impact of Artificial Aging Using Chewing Simulator on Micro-Shear Bond Strength and Micro-Leakage of Alkasite and Bioactive Resin Based Composites: An in-Vitro Comparative Study. Tanta Dent. J. 2024, 21, 157–169. [Google Scholar] [CrossRef]
- Ebaya, M.M.; Ali, A.I.; El-Haliem, H.A.; Mahmoud, S.H. Color Stability and Surface Roughness of Ormocer- versus Methacrylate-Based Single Shade Composite in Anterior Restoration. BMC Oral Health 2022, 22, 208. [Google Scholar] [CrossRef]
- Çağırır Dindaroğlu, F.; Yılmaz, E. Two-Year Evaluation of a Nano-Hybrid and a Bulk-Fill Resin Composite: A Randomized, Double-Blind Split-Mouth Clinical Study. Clin. Oral Investig. 2024, 28, 208. [Google Scholar] [CrossRef]
- Awad, M.M.; Alshehri, T.; Alqarni, A.M.; Magdy, N.M.; Alhalabi, F.; Alotaibi, D.; Alrahlah, A. Evaluation of the Bond Strength and Cytotoxicity of Alkasite Restorative Material. Appl. Sci. 2020, 10, 6175. [Google Scholar] [CrossRef]
- Cruz, M.W.A.; Turssi, C.P.; Amaral, F.L.; Basting, R.T.; Junior, W.F.V.; Franca, F.M.G. Long-Term Bond Strength of Ormocer-Based Resin Composites Using a Universal Adhesive Used in Different Adhesive Strategies. Am. J. Dent. 2023, 36, 201–206. [Google Scholar]
- Boaro, L.C.C.; Lopes, D.P.; de Souza, A.S.C.; Nakano, E.L.; Perez, M.D.A.; Pfeifer, C.S.; Gonçalves, F. Clinical Performance and Chemical-Physical Properties of Bulk Fill Composites Resin —A Systematic Review and Meta-Analysis. Dent. Mater. 2019, 35, e249–e264. [Google Scholar] [CrossRef]
- Eltoum, N.A.; Bakry, N.S.; Talaat, D.M.; Elshabrawy, S.M. Microleakage evaluation of bulk-fill composite in Class II restorations of primary molars. Alex. Dent. J. 2019, 44, 111–116. [Google Scholar] [CrossRef]
- Chatra, A.; Nair, P.M.S.; D’costa, V.F.; Kukkila, J.; Mayya, A.; Chatra, L.; Mayya, S.S. Shear Bond Strength of Self-Adhesive Versus Conventional Flowable Composites: An In Vitro Study. J. Int. Soc. Prev. Community Dent. 2024, 14, 362–368. [Google Scholar] [CrossRef]
- Zanatta, C.T.I.; de Faveri Cardoso, P.M.; Camilotti, V.; Mendonça, M.J.; Ueda, J.K. Micro-Shear Bond Strength of Self-Adhesive Versus Conventional Low-Viscosity Composite Resins: In Vitro Study. J. Adv. Med. Med. Res. 2024, 36, 11–20. [Google Scholar] [CrossRef]
- Bilgrami, A.; Maqsood, A.; Alam, M.K.; Ahmed, N.; Mustafa, M.; Alqahtani, A.R.; Alshehri, A.; Alqahtani, A.A.; Alghannam, S. Evaluation of Shear Bond Strength between Resin Composites and Conventional Glass Ionomer Cement in Class II Restorative Technique—An In Vitro Study. Materials 2022, 15, 4293. [Google Scholar] [CrossRef] [PubMed]
- Prabakar, J.; Jeevanandan, G.; Kengadaran, S. In Vitro Evaluation of Viscosity, Depth of Penetration, Microleakage, and Shear Bond Strength of Conventional and Hydrophilic Sealants. Int. J. Clin. Pediatr. Dent. 2023, 16, 765–770. [Google Scholar] [CrossRef]
- Javed, F.; Siddiqui, F.; Majid, A. Beyond Traditional Fillings: Why Bulk-Fill Composites Are Changing the Game. Int. J. Res. Rev. 2024, 11, 198–203. [Google Scholar] [CrossRef]
- Alp, G.; Subaşı, M.G.; Johnston, W.M.; Yilmaz, B. Effect of Different Resin Cements and Surface Treatments on the Shear Bond Strength of Ceramic-Glass Polymer Materials. J. Prosthet. Dent. 2018, 120, 454–461. [Google Scholar] [CrossRef]
- Rayar, S.; Sadasiva, K.; Singh, P.; Thomas, P.; Senthilkumar, K.; Jayasimharaj, U. Effect of 2% Chlorhexidine on Resin Bond Strength and Mode of Failure Using Two Different Adhesives on Dentin: An in Vitro Study. J. Pharm. Bioallied Sci. 2019, 11, S325–S330. [Google Scholar] [CrossRef]
- Sauro, S.; Faus-Matoses, V.; Makeeva, I.; Martí, J.M.N.; Martínez, R.G.; Bautista, J.A.G.; Faus-Llácer, V. Effects of Polyacrylic Acid Pre-Treatment on Bonded-Dentine Interfaces Created with a Modern Bioactive Resin-Modified Glass Ionomer Cement and Subjected to Cycling Mechanical Stress. Materials 2018, 11, 1884. [Google Scholar] [CrossRef]
- Alsunbul, H.; Almutairi, B.; Aljanakh, M.; Abduljabbar, T. Hybrid Ceramic Repair Strength, Surface Roughness, and Bond Failure, Using Methylene Blue-Activated Low-Level Laser Therapy, Carbon Dioxide, and Ti: Al2O3 Laser. Photodiagnosis Photodyn. Ther. 2023, 43, 103693. [Google Scholar] [CrossRef]
- Takashino, N.; Nakashima, S.; Shimada, Y.; Tagami, J.; Sumi, Y. Effect of Thermal Cyclic Stress on Acid Resistance of Resin-Infiltrated Incipient Enamel Lesions in Vitro. Dent. Mater. J. 2016, 35, 425–431. [Google Scholar] [CrossRef]
Materials | Composition |
---|---|
Bulk-fill Composite GrandioSO, Voco; GmbH Germany | Filler 89% w/w: Glass Ceramic Filler; Functionalized Silicon Dioxide Nanoparticles; Iron Oxide; Titanium Oxide.Resin: BisGMa; TEGDMA Camphorquinone Photocatalyst Butylated Hydroxytoluene Stabilizer |
BF composite Tetric® N-Ceram BF composite (Ivoclar Vivadent, NY, USA) | Monomer Matrix: Mono-methacrylate and Di-methacrylate (28 wt.%) Fillers: Barium glass, Ytterbium trifluoride and Copolymers (71 wt.%). Additives, initiators, stabilizers and pigments are additional ingredients (<1.0 wt.%) |
Alkasite (Cention N) (Ivoclar Vivadent Inc., NY, USA, A2 shade) | Liquid consists of Methacrylate and initiators, while the Powder includes a mixture of glass fillers, initiators, and pigments |
Ormocer (Admira Fusion xtra, VOCO GmbH) | Pure silicate-based ORMOCER matrix, containing a high percentage of Nano-hybrid fillers (60% nano-particulate and 40% micro/macro-particulate). Free of traditional monomers like Bis-GMA or HEMA. |
Experimental Groups | Mean ± SD | p-Value ! |
---|---|---|
Group 1: Conventional Composite | 47.23 ± 0.10 c | ˂0.05 |
Group 2: BF Composite | 27.11 ± 0.11 b | |
Group 3: Alkasite | 15.24 ± 0.14 a | |
Group 4: Ormocer | 13.22 ± 0.12 a |
Experimental Groups | Mean± SD (MPa) | p-Value ! |
---|---|---|
Group 1: Conventional Composite | 9.92 ± 0.53 c | ˂0.05 |
Group 2: BF Composite | 11.18 ± 0.22 b | |
Group 3: Alkasite | 13.12 ± 0.16 a | |
Group 4: Ormocer | 13.42 ± 0.19 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shono, N.N.; Alkhudhairy, F. Evaluation of Microleakage, Tensile Bond Strength, and Adhesive Interface of Bulk Fill, Ormocer, and Alkasite Against Conventional Composite in Caries-Affected Primary Molars. Coatings 2025, 15, 321. https://doi.org/10.3390/coatings15030321
Shono NN, Alkhudhairy F. Evaluation of Microleakage, Tensile Bond Strength, and Adhesive Interface of Bulk Fill, Ormocer, and Alkasite Against Conventional Composite in Caries-Affected Primary Molars. Coatings. 2025; 15(3):321. https://doi.org/10.3390/coatings15030321
Chicago/Turabian StyleShono, Nourah N., and Fahad Alkhudhairy. 2025. "Evaluation of Microleakage, Tensile Bond Strength, and Adhesive Interface of Bulk Fill, Ormocer, and Alkasite Against Conventional Composite in Caries-Affected Primary Molars" Coatings 15, no. 3: 321. https://doi.org/10.3390/coatings15030321
APA StyleShono, N. N., & Alkhudhairy, F. (2025). Evaluation of Microleakage, Tensile Bond Strength, and Adhesive Interface of Bulk Fill, Ormocer, and Alkasite Against Conventional Composite in Caries-Affected Primary Molars. Coatings, 15(3), 321. https://doi.org/10.3390/coatings15030321