A Study on Tantalum Alloying Layer and Its Performance on the Surface of 316LSS in Harsh Environments
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Materials and Structures
2.2. Phase Analysis and Surface Morphology
2.3. Mechanical Property
2.3.1. Vickers Hardness Test
2.3.2. Friction and Wear Performance Test
2.3.3. Adhesion Test Between Alloy Layer and Substrate
2.4. Electrochemical Measurement
2.5. Three-Dimensional Profile and Surface Contact Angle
2.6. High-Temperature Oxidation Performance
2.7. Molecular Dynamic Simulation of the Growth Mechanism of Fe-Ta Alloy Layers
3. Results and Discussion
3.1. Structure Characterization
3.2. Research of Surface State
3.3. Research of Mechanical Performance
3.4. Research of Friction Properties
3.5. Research of Anti-Corrosion Performance
3.6. Study on the Growth Mechanism of the Alloy Layer Surface
4. Conclusions
- (1)
- Dense and complete Fe-Ta diffusion layers with varying alloying times were prepared on a 316L stainless steel substrate using DGPSAT. The processing parameters significantly influenced the surface microstructure; as alloying time increased, the surface pit-like wrinkled structure gradually transformed into a nanoscale acicular α-Ta structure, exhibiting a preferred orientation of the (110) lattice plane.
- (2)
- Due to the influence of processing parameters, a unique needle-like nanoscale tantalum structure was formed on the surface. This structure significantly increased surface roughness, changing the water contact angle from 73.01° (hydrophilic) to 101.72° (hydrophobic). Additionally, hardness improved from 152 HV0.2 to 970 HV0.2. The nanoscale tantalum structure provided excellent solid lubrication effects, reducing the friction coefficient to 0.5.
- (3)
- The dense tantalum oxide passivation layer formed on the alloy layer surface significantly enhanced the corrosion resistance of the alloyed samples, reducing the corrosion rate from 1.04 × 10−2 mm/a for the substrate to 2.83 × 10−4 mm/a. Isothermal oxidation experiments showed that the oxidation kinetic curves indicated a lower weight gain due to oxidation for the alloyed layer compared to the substrate, demonstrating a certain degree of resistance to high-temperature oxidation.
- (4)
- Molecular dynamic simulations revealed an island growth mode during the formation of the alloy layer, with a gradient distribution of Fe and Ta elements in the diffusion layer, significantly enhancing the bonding strength with the substrate.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, L.-C.; Chen, L.-Y. A Review on Biomedical Titanium Alloys: Recent Progress and Prospect. Adv. Eng. Mater. 2019, 21, 1801215. [Google Scholar] [CrossRef]
- Liu, N.; Cao, X.; Zhao, T.; Zhang, Z.W. Progress of zirconium alloying in iron-based alloys and steels. Mater. Sci. Technol. 2021, 37, 830–851. [Google Scholar] [CrossRef]
- Hou, J.; Wang, Y.; Yuan, Z.; Cai, H.; Chen, W. Study on Improving Corrosion Resistance of Tantalum Coating by Anodic Oxidation. Int. J. Electrochem. Sci. 2021, 16, 210764. [Google Scholar] [CrossRef]
- Hirpara, J.; Chawla, V.; Chandra, R. Anticorrosive Behavior Enhancement of Stainless Steel 304 through Tantalum-Based Coatings: Role of Coating Morphology. J. Mater. Eng. Perform. 2021, 30, 1895–1905. [Google Scholar] [CrossRef]
- Cancellieri, C.; Scott, E.A.; Braun, J.; King, S.W.; Oviedo, R.; Jezewski, C.; Richards, J.; La Mattina, F.; Jeurgens, L.P.H.; Hopkins, P.E. Interface and layer periodicity effects on the thermal conductivity of copper-based nanomultilayers with tungsten, tantalum, and tantalum nitride diffusion barriers. J. Appl. Phys. 2020, 128, 195302. [Google Scholar] [CrossRef]
- McNamara, K.; Beloshapkin, S.; Hossain, K.; Dhoubhadel, M.; Tofail, S. Tantalum coating inhibits Ni-migration from titanium out-diffusion in NiTi shape memory biomedical alloy. Appl. Surf. Sci. 2020, 535, 147621. [Google Scholar] [CrossRef]
- Chen, W.-C.; Wang, Z.-Y.; Yu, C.-Y.; Liao, B.-H.; Lin, M.-T. A study of the phase transformation of low temperature deposited tantalum thin films using high power impulse magnetron sputtering and pulsed DC magnetron sputtering. Surf. Coat. Technol. 2022, 436, 128288. [Google Scholar] [CrossRef]
- Cheng, C.; Fu, Y.; Du, C.; Du, Z.; Jiang, Z.; Zhou, F.; Zhong, K.; Wang, X. Experimental and numerical study of tantalum-tungsten alloy rod penetrator impacting thick armor plate. Int. J. Refract. Met. Hard Mater. 2022, 107, 105873. [Google Scholar] [CrossRef]
- Kerstens, F.; Cervone, A.; Gradl, P. End to end process evaluation for additively manufactured liquid rocket engine thrust chambers. Acta Astronaut. 2021, 182, 454–465. [Google Scholar] [CrossRef]
- Robinson, M.; Romei, F.; Ogunlesi, C.; Gibbon, D.; Grubišić, A.; Walker, S. Endurance testing of engineering model additive-manufactured high temperature resistojets made from Inconel 625 and tantalum. Mater. Des. 2022, 222, 111099. [Google Scholar] [CrossRef]
- Xu, B.S.; Tan, J.; Chen, J.M. Science and technology development of surface engineering. China Surf. Eng. 2011, 2, 1–12. [Google Scholar] [CrossRef]
- Ramezani, M.; Ripin, Z.M.; Pasang, T.; Jiang, C.-P. Surface Engineering of Metals: Techniques, Characterizations and Applications. Metals 2023, 13, 1299. [Google Scholar] [CrossRef]
- Schalk, N.; Tkadletz, M.; Mitterer, C. Hard coatings for cutting applications: Physical vs. chemical vapor deposition and future challenges for the coatings community. Surf. Coat. Technol. 2021, 429, 127949. [Google Scholar] [CrossRef]
- Wan, Y.; Tang, W.; Li, J.; Xiong, D. Comparison of method and performance in tantalum coating prepared by molten salt electroplating and glow infiltration. Surf. Coat. Technol. 2019, 375, 315–322. [Google Scholar] [CrossRef]
- Su, Y.; Huang, W.; Zhang, T.; Shi, C.; Hu, R.; Wang, Z.; Cai, L. Tribological properties and microstructure of monolayer and multilayer Ta coatings prepared by magnetron sputtering. Vacuum 2021, 189, 110250. [Google Scholar] [CrossRef]
- Cui, J.; Zhang, S.; Huang, M.; Mu, X.; Hei, J.; Yau, V.; He, H. Micro-nano porous structured tantalum-coated dental implants promote osteogenic activity in vitro and enhance osseointegration in vivo. J. Biomed. Mater. Res. Part A 2023, 111, 1358–1371. [Google Scholar] [CrossRef]
- Lee, M.-K.; Lee, H.; Park, C.; Kang, I.-G.; Kim, J.; Kim, H.-E.; Jung, H.-D.; Jang, T.-S. Accelerated biodegradation of iron-based implants via tantalum-implanted surface nanostructures. Bioact. Mater. 2021, 9, 239–250. [Google Scholar] [CrossRef]
- Zhang, M.; Ma, Y.; Gao, J.; Hei, H.; Jia, W.; Bai, J.; Liu, Z.; Huang, X.; Xue, Y.; Yu, S.; et al. Mechanical, Electrochemical, and Osteoblastic Properties of Gradient Tantalum Coatings on Ti6Al4V Prepared by Plasma Alloying Technique. Coatings 2021, 11, 631. [Google Scholar] [CrossRef]
- Zhao, Y.; Xu, J.; Peng, S. Synthesis and evaluation of TaC nanocrystalline coating with excellent wear resistance, corrosion resistance, and biocompatibility. Ceram. Int. 2021, 47, 20032–20044. [Google Scholar] [CrossRef]
- Bing, Z.; Liu, Y.; Liu, Z.; Ma, Y.; Hei, H.; Shi, B.; Wu, Y.; Yu, S. Improved tribological properties of stainless steel by high temperature-alloyed tantalum gradient layer. Vacuum 2021, 196, 110783. [Google Scholar] [CrossRef]
- Zang, K.; He, X.; Liang, W.; Miao, Q.; Sun, Y.; Yu, H.; Yin, M.; Gao, X.; Song, Y. The mechanical properties and wear resistance of Hf-Ta-N coatings prepared by double glow plasma alloying technology. Ceram. Int. 2022, 49, 9956–9966. [Google Scholar] [CrossRef]
- Yin, M.; Yu, H.; Miao, Q.; Liang, W. Effects of Ta content on the oxidation and high-temperature tribological behaviors of (Zr, Ta) N coating deposited by double-cathode glow plasma alloy. Ceram. Int. 2021, 47, 34072–34085. [Google Scholar] [CrossRef]
- Epp, J.; Huebschen, G.; Altpeter, I.; Tschuncky, R.; Herrmann, H.-G. X-ray diffraction techniques for material characterization. In Materials Characterization Using Nondestructive Evaluation (NDE) Methods; Woodhead Publishing: Sawston, UK, 2016; pp. 81–124. [Google Scholar] [CrossRef]
- Butt, H.J.; Graf, K.; Kappl, M. Physics and Chemistry of Interfaces; John Wiley & Sons: Hoboken, NJ, USA, 2023. [Google Scholar]
- Foiles, S.M.; Baskes, M.I.; Daw, M.S. Embedded-atom-method functions for the FCC metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys. Phys. Rev. B 1986, 33, 7983–7991. [Google Scholar] [CrossRef] [PubMed]
- Xie, L.; Brault, P.; Bauchire, J.-M.; Thomann, A.-L.; Bedra, L. Molecular dynamics simulations of clusters and thin film growth in the context of plasma sputtering deposition. J. Phys. D Appl. Phys. 2014, 47, 224004. [Google Scholar] [CrossRef]
- Brault, P.; Neyts, E.C. Molecular dynamics simulations of supported metal nanocatalyst formation by plasma sputtering. Catal. Today 2015, 256, 3–12. [Google Scholar] [CrossRef]
- Thompson, M.W.I.I. The energy spectrum of ejected atoms during the high energy sputtering of gold. Philos. Mag. 1968, 18, 377–414. [Google Scholar] [CrossRef]
- Meyer, K.; Schuller, I.K.; Falco, C.M. Thermalization of sputtered atoms. J. Appl. Phys. 1981, 52, 5803–5805. [Google Scholar] [CrossRef]
- Gras-Marti, A.; Valles-Abarca, J.A. Slowing down and thermalization of sputtered particle fluxes: Energy distributions. J. Appl. Phys. 1983, 54, 1071–1075. [Google Scholar] [CrossRef]
- Yamamura, Y.; Takiguchi, T.; Ishida, M. Energy and angular distributions of sputtered atoms at normal incidence. Radiat. Eff. Defects Solids 1991, 118, 237–261. [Google Scholar] [CrossRef]
- Xu, Z.; Zhang, Y.M.; Zhang, P.Z.; He, Z.Y.; Gao, Y. Double glow plasma surface metallurgy technology. HeatTreat. 2009, 1, 7–17. [Google Scholar]
- Wang, Y.; Zhang, P.-Z.; Wu, H.-Y.; Wei, X.-F.; Bi, Q.; Song, J. Microstructure and electrochemical properties of plasma tantalumising on low carbon steel. Surf. Eng. 2015, 31, 634–640. [Google Scholar] [CrossRef]
- Matsushima, H.; Nohira, T.; Mogi, I.; Ito, Y. Effects of magnetic fields on iron electrodeposition. Surf. Coat. Technol. 2004, 179, 245–251. [Google Scholar] [CrossRef]
- Li, Z.; Munroe, P.; Jiang, Z.-T.; Zhao, X.; Xu, J.; Zhou, Z.-F.; Jiang, J.-Q.; Fang, F.; Xie, Z.-H. Designing superhard, self-toughening CrAlN coatings through grain boundary engineering. Acta Mater. 2012, 60, 5735–5744. [Google Scholar] [CrossRef]
- Yang, S.S.; Yang, F.; Chen, M.H.; Niu, Y.; Yang, F.; Wang, F. Effect of nitrogen doping on microstructure and wear resistance of tantalum coatings de-posited by direct current magnetron sputtering. Acta Metall. Sin. 2019, 55, 308–316. [Google Scholar] [CrossRef]
- Lucas, T.J.; Lawson, N.C.; Janowski, G.M.; Burgess, J.O. Effect of grain size on the monoclinic transformation, hardness, roughness, and modulus of aged partially stabilized zirconia. Dent. Mater. 2015, 31, 1487–1492. [Google Scholar] [CrossRef]
- Perron, A.; Politano, O.; Vignal, V. Grain size, stress and surface roughness. Surf. Interface Anal. 2008, 40, 518–521. [Google Scholar] [CrossRef]
- Wouters, O.; Vellinga, W.; Vantijum, R.; Dehosson, J. Effects of crystal structure and grain orientation on the roughness of deformed polycrystalline metals. Acta Mater. 2006, 54, 2813–2821. [Google Scholar] [CrossRef]
- Zhang, X.; Song, X.H.; Zhang, D.L. Thickness dependence of grain size and surface roughness for dc magnetron sputtered Au films. Chin. Phys. B 2010, 19, 086802. [Google Scholar] [CrossRef]
- Nosonovsky, M.; Bhushan, B. Superhydrophobic surfaces and emerging applications: Non-adhesion, energy, green engineering. Curr. Opin. Colloid Interface Sci. 2009, 14, 270–280. [Google Scholar] [CrossRef]
- Wang, J.; Feng, J.; Zou, X.; Long, Y.; Tian, X. Effect of surface microstructure on the hydrophobicity of coatings. Prog. Org. Coat. 2012, 74, 777–780. [Google Scholar] [CrossRef]
- Zhang, M.; Yang, B.; Chu, J.; Nieh, T. Hardness enhancement in nanocrystalline tantalum thin films. Scr. Mater. 2006, 54, 1227–1230. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, M.; Chu, J.; Nieh, T. Structures and nanoindentation properties of nanocrystalline and amorphous Ta–W thin films. Scr. Mater. 2008, 58, 195–198. [Google Scholar] [CrossRef]
- Hansen, N. Hall–Petch relation and boundary strengthening. Scr. Mater. 2004, 51, 801–806. [Google Scholar] [CrossRef]
- Petch, N.J. The cleavage strength of polycrystals. J. Iron Steel Inst. 1953, 174, 25–28. [Google Scholar]
- Hogmark, S.; Jacobson, S.; Larsson, M. Design and evaluation of tribological coatings. Wear 2000, 246, 20–33. [Google Scholar] [CrossRef]
- Cui, L.; Sun, L.L.; Guo, P.; Ma, X.; Wang, S.Y.; Wang, A.Y. Effect of deposition time on structure and performance of diamond-like carbon films on PEEK. Chin. J. Mater. Res. 2022, 36, 801–810. [Google Scholar] [CrossRef]
- Wang, Z.X.; He, Z.Y.; Wang, W.B.; Wang, Y.Q.; Tang, B. Study on frictional wear performance of titanium alloy after surface Nb-C composite treatment. Cailiao Kexue Yu Gongyi 2011, 19, 122–125. [Google Scholar]
- Luo, Y.; Bi, M.; Cai, H.; Hu, C.; Wei, Y.; Chen, L.; Yuan, Z.; Wang, X. Influence of crystal planes on corrosion behavior of tantalum: Experimental and first-principles study. Int. J. Electrochem. Sci. 2022, 17, 220314. [Google Scholar] [CrossRef]
- Maddala, J.; Sambath, K.; Kumar, V.; Ramanathan, S. Identification of reaction mechanism for anodic dissolution of metals using Electrochemical Impedance Spectroscopy. J. Electroanal. Chem. 2010, 638, 183–188. [Google Scholar] [CrossRef]
- MacGregor-Ramiasa, M.N.; Vasilev, K. Questions and Answers on the Wettability of Nano-Engineered Surfaces. Adv. Mater. Interfaces 2017, 4, 1700381. [Google Scholar] [CrossRef]
- Wang, E.G. Atomic-scale study of kinetics in film growth (I). Prog. Phys. 2003, 23, 1–61. [Google Scholar]
Compositions | Fe | C | Si | Mn | P | S | Cr | Ni | Mo |
---|---|---|---|---|---|---|---|---|---|
316LSS | margin | ≤0.03 | ≤1.00 | ≤2.00 | ≤0.04 | ≤0.03 | 16.50 | 2.40 | 14.30 |
Sample | Working Hour/h | Working Pressure/Pa | Working Voltage/V | Working Temperature/°C |
---|---|---|---|---|
T1 | 3 h | 35 | 800–900 | 700–800 |
T2 | 4 h | |||
T3 | 5 h |
Model Name | Fe-Ta |
---|---|
Simulation Box Size (Å) | 30 × 30 × 30 |
Fixed Layer Size (Å) | 30 × 30 × 4 |
Thermostat Layer Size (Å) | 30 × 30 × 6 |
Newtonian Layer Size (Å) | 30 × 30 × 20 |
Potential Function | EAM |
Time Step (fs) | 1 |
Model Name | Fe-Ta |
---|---|
Air Pressure (Pa) | 35 |
Temperature (K) | 1023 |
Pole Spacing (mm) | 15 |
Voltage (V) | 950 |
Deposition Rate (atom/ps) | 1 |
Simulated Atom Count | 20,000 |
Relaxation Time (ps) | 100 |
Samples | Vickers Hardness (HV0.2) | 95% Confidence Interval |
---|---|---|
316LSS | 152 | ±8 |
T1 | 587 | ±15 |
T2 | 820 | ±18 |
T3 | 970 | ±20 |
Samples | Icorr (A cm−2) | Ecorr (V) | Corrosion Rate (mm/a) |
---|---|---|---|
316LSS | 8.87 × 10−7 | −3.77 × 10−1 | 1.04 × 10−2 |
T1 | 1.07 × 10−7 | −2.61 × 10−1 | 1.26 × 10−3 |
T2 | 5.84 × 10−8 | −2.31 × 10−1 | 6.87 × 10−4 |
T3 | 1.36 × 10−8 | −1.88 × 10−1 | 1.60 ×10−4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Q.; Fan, Z.; Chen, X.; Tao, X.; Ni, R.; Zhang, K.; Khan, A.M.; Raza, S.M.; Wen, Y.; Wu, H. A Study on Tantalum Alloying Layer and Its Performance on the Surface of 316LSS in Harsh Environments. Coatings 2025, 15, 313. https://doi.org/10.3390/coatings15030313
Li Q, Fan Z, Chen X, Tao X, Ni R, Zhang K, Khan AM, Raza SM, Wen Y, Wu H. A Study on Tantalum Alloying Layer and Its Performance on the Surface of 316LSS in Harsh Environments. Coatings. 2025; 15(3):313. https://doi.org/10.3390/coatings15030313
Chicago/Turabian StyleLi, Qinghua, Zhehang Fan, Xiaohu Chen, Xiaoyong Tao, Ruian Ni, Kai Zhang, Aqib Mashood Khan, Syed Muhammad Raza, Yiming Wen, and Hongyan Wu. 2025. "A Study on Tantalum Alloying Layer and Its Performance on the Surface of 316LSS in Harsh Environments" Coatings 15, no. 3: 313. https://doi.org/10.3390/coatings15030313
APA StyleLi, Q., Fan, Z., Chen, X., Tao, X., Ni, R., Zhang, K., Khan, A. M., Raza, S. M., Wen, Y., & Wu, H. (2025). A Study on Tantalum Alloying Layer and Its Performance on the Surface of 316LSS in Harsh Environments. Coatings, 15(3), 313. https://doi.org/10.3390/coatings15030313