Mitigating Sulfate-Reducing Bacteria-Induced Corrosion of Pure Copper in Simulated Oilfield-Produced Water Using Cetylpyridinium Chloride
Abstract
:1. Introduction
2. Experimental Methods
2.1. Preparation of Coupons
2.2. Bacteria and Culture Medium
2.3. SRB Cell Count
2.4. Weight Loss Tests
2.5. Electrochemical Measurements
2.6. Surface Morphology Characterization
3. Results
3.1. Evaluation of Antibacterial Performance of CPC
3.2. Weight Loss
3.3. EIS Measurements
3.4. Potentiodynamic Polarization
3.5. Characterization of Surface Films and Corrosion Products
3.6. Pit Analysis
4. Discussion
5. Conclusions
- (1).
- SRB biofilms accelerated the corrosion of pure copper by producing metabolites such as hydrogen sulfide, which induced severe pitting and localized corrosion. Surface analysis revealed that corrosion products were thicker and more extensive in the presence of SRB compared with abiotic conditions.
- (2).
- CPC effectively inhibited SRB-induced corrosion, with an inhibition efficiency of up to 89% at 80 mg/L. Weight loss measurements and potentiodynamic polarization curves confirmed that CPC reduced corrosion rates under both biotic and abiotic conditions.
- (3).
- CPC disrupted SRB biofilm formation and metabolic activity, reducing the production of corrosive metabolites such as H2S. CPC adsorbed on the copper surface, forming a protective barrier that minimized metal dissolution and slowed cathodic and anodic reactions.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, X.G.; Zhang, D.W.; Liu, Z.Y.; Li, Z.; Du, C.W.; Dong, C.F. Share corrosion data. Nature 2015, 527, 441–442. [Google Scholar] [CrossRef]
- Gu, T.Y.; Wang, D.; Lekbach, Y.; Xu, D.K. Extracellular electron transfer in microbial biocorrosion. Curr. Opin. Electrochem. 2021, 29, 100763. [Google Scholar] [CrossRef]
- Javaherdashti, R. A review of some characteristics of MIC caused by sulfate-reducing bacteria: Past, present and future. Anti Corros. Methods Mater. 1999, 46, 173–180. [Google Scholar] [CrossRef]
- Dong, X.C.; Zhai, X.F.; Yang, J.; Guan, F.; Zhang, Y.M.; Duan, J.Z.; Hou, B.R. Two metabolic stages of SRB strain Desulfovibrio bizertensis affecting corrosion mechanism of carbon steel Q235. Corros. Commun. 2023, 10, 56–68. [Google Scholar] [CrossRef]
- Li, Y.C.; Ru, J.; Al-Mahamedh, H.H.; Xu, D.K.; Gu, T.Y. Enhanced biocide mitigation of field biofilm consortia by a mixture of d-amino acids. Front. Microbiol. 2016, 7, 896. [Google Scholar] [CrossRef]
- Ilhan-Sungur, E.; Cotuk, A. Microbial corrosion of galvanized steel in a simulated recirculating cooling tower system. Corros. Sci. 2010, 52, 161–171. [Google Scholar] [CrossRef]
- Zhao, J.L.; Sun, D.; Arroussi, M.; Lian, T.Y.; Zhang, X.R.; Yang, C.G.; Yang, K. Effect of anodic polarization treatment on microbiologically influenced corrosion resistance of Cu-bearing stainless steel against marine Pseudomonas aeruginosa. Corros. Sci. 2022, 207, 110592. [Google Scholar] [CrossRef]
- Chen, S.Q.; Zhang, D. Study of corrosion behavior of copper in 3.5 wt.% NaCl solution containing extracellular polymeric substances of an aerotolerant sulphate-reducing bacteria. Corros. Sci. 2018, 136, 275–284. [Google Scholar] [CrossRef]
- Liu, H.Y.; Chen, C.Y.; Asif, M.; Zhao, T.; Lei, B.; Meng, G.; Liu, H.F. Mechanistic investigations of corrosion and localized corrosion of X80 steel in seawater comprising sulfate-reducing bacteria under continuous carbon starvation. Corros. Commun. 2022, 8, 70–80. [Google Scholar] [CrossRef]
- Smith, M.; Shibulal, B.; Burgess, H.; Cooper, I.; Moles, N.; Willows, A. Reaction mechanisms and diagnostic mineralogy of intertidal steel corrosion: An X-ray photoelectron spectroscopy study. Corros. Commun. 2024, 13, 68–82. [Google Scholar] [CrossRef]
- Wu, C.; Wang, Z.P.; Zhang, Z.; Zhang, B.W.; Ma, G.J.; Yao, Q.; Gan, Z.H.; Wu, J.; Li, X.G. Influence of crevice width on sulfate-reducing bacteria (SRB)-induced corrosion of stainless steel 316L. Corros. Commun. 2021, 4, 33–44. [Google Scholar] [CrossRef]
- Dou, W.W.; Ru, J.; Peng, J.; Liu, J.L.; Chen, S.G.; Gu, T.Y. Investigation of the mechanism and characteristics of copper corrosion by sulfate reducing bacteria. Corros. Sci. 2018, 144, 237–248. [Google Scholar] [CrossRef]
- Tian, J.; Kim, T.; Lu, T.J.; Hodson, H.P.; Queheillalt, D.T.; Sypeck, D.J.; Wadley, H. The effects of topology upon fluid-flow and heat-transfer within cellular copper structures. Int. J. Heat Mass Transf. 2004, 47, 3171–3186. [Google Scholar] [CrossRef]
- Wang, Q.H.; Zhao, C.K.; Wang, R.Z.; Aslam, R.; Zhou, X.; Zhang, Q.; Yan, Z.T.; Li, Y.S.X.M.; Zheng, H.H. Rhododendron simsii leaf extract as a corrosion inhibitor for Cu in 0.5 M H2SO4: Experimental and theoretical studies. Colloids Surf. A Physicochem. Eng. Asp. 2024, 682, 132904. [Google Scholar] [CrossRef]
- Petrisor, I.G.; Kanner, A. Chinese Drywall—Environmental Forensic Opportunities. Environ. Forensics 2010, 11, 6–16. [Google Scholar] [CrossRef]
- Huang, G.; Chan, K.Y.; Fang, H.H.P. Microbiologically Induced Corrosion of 70Cu-30Ni Alloy in Anaerobic Seawater. J. Electrochem. Soc. 2004, 151, B434–B439. [Google Scholar] [CrossRef]
- Huttunen-Saarivirta, E.; Rajala, P.; Carpén, L. Corrosion behaviour of copper under biotic and abiotic conditions in anoxic ground water: Electrochemical study. Electrochim. Acta 2016, 203, 350–365. [Google Scholar] [CrossRef]
- Kahrilas, G.A.; Blotevogel, J.; Stewart, P.S.; Borch, T. Biocides in Hydraulic Fracturing Fluids: A Critical Review of Their Usage, Mobility, Degradation, and Toxicity. Environ. Sci. Technol. 2015, 49, 1. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.L.; Hou, B.S.; Xiang, J.; Chen, X.D.; Gu, T.Y.; Liu, H.F. The performance and mechanism of bifunctional biocide sodium pyrithione against sulfate reducing bacteria in X80 carbon steel corrosion. Corros. Sci. 2019, 150, 296–308. [Google Scholar] [CrossRef]
- Xu, J.W.; Yin, Y.G.; Tan, Z.Q.; Wang, B.W.; Guo, X.R.; Li, X.; Liu, J.F. Enhanced removal of Cr(VI) by biochar with Fe as electron shuttles. J. Environ. Sci. 2019, 78, 109–117. [Google Scholar] [CrossRef]
- Nguyen, T.; Roddick, F.A.; Fan, L. Biofouling of Water Treatment Membranes: A Review of the Underlying Causes, Monitoring Techniques and Control Measures. Membranes 2012, 2, 804–840. [Google Scholar] [CrossRef]
- Rasheed, P.A.; Jabbar, K.A.; Rasool, K.; Pandey, R.P.; Sliem, M.H.; Helal, M.; Samara, A.; Abdullah, A.M.; Mahmoud, K.A. Controlling the Biocorrosion of Sulfate-Reducing Bacteria (SRB) on Carbon Steel using ZnO/Chitosan Nanocomposite as an Eco-Friendly Biocide. Corros. Sci. 2019, 148, 397–406. [Google Scholar] [CrossRef]
- Ubong, E.; Omar, F.; Jerzy, S. Effect of benzothiazole biocide on SRB-induced biocorrosion of hot-dip galvanized steel. Eng. Fail. Anal. 2018, 93, 111–121. [Google Scholar]
- Seter, M.; Thomson, M.J.; Chong, A.; Macfarlane, D.R.; Forsyth, M. Cetrimonium Nalidixate as a Multifunctional Inhibitor to Combat Biofilm Formation and Microbiologically Influenced Corrosion. Aust. J. Chem. 2013, 66, 921–929. [Google Scholar] [CrossRef]
- Parthipan, P.; Narenkumar, J.; Elumalai, P.; Preethi, P.S.; Usha, R.; Agrawal, A.; Rajasekar, A. Neem extract as a green inhibitor for microbiologically influenced corrosion of carbon steel API 5LX in a hypersaline environments. J. Mol. Liq. 2017, 240, 121–127. [Google Scholar] [CrossRef]
- Punniyakotti, P.; Punniyakotti, E.; Jayaraman, N.; Machuca, L.L.; Kadarkarai, M.; Karthikeyan, O.P.; Aruliah, R. Allium sativum (garlic extract) as a green corrosion inhibitor with biocidal properties for the control of MIC in carbon steel and stainless steel in oilfield environments. Int. Biodeterior. Biodegrad. 2018, 132, 66–73. [Google Scholar]
- Yamamoto, M.; Inokoshi, M.; Tamura, M.; Shimizubata, M.; Nozaki, K.; Takahashi, R.; Yoshihara, K.; Minakuchi, S. Development of 4-META/MMA-TBB resin with added benzalkonium chloride or cetylpyridinium chloride as antimicrobial restorative materials for root caries. J. Mech. Behav. Biomed. 2021, 124, 104838. [Google Scholar] [CrossRef]
- Raut, P.; Weller, S.R.R.; Obeng, B.; Soos, B.L.L.; West, B.E.E.; Potts, C.M.M.; Sangroula, S.; Kinney, M.S.S.; Burnell, J.E.E.; King, B.L.L.; et al. Cetylpyridinium chloride (CPC) reduces zebrafish mortality from influenza infection: Super-resolution microscopy reveals CPC interference with multiple protein interactions with phosphatidylinositol 4,5-bisphosphate in immune function. Toxicol. Appl. Pharm. 2022, 440, 115913. [Google Scholar] [CrossRef]
- Naoe, T.; Hasebe, A.; Horiuchi, R.; Makita, Y.; Okazaki, Y.; Yasuda, K.; Matsuo, K.; Yoshida, Y.; Tsuga, K.; Abe, Y.; et al. Development of tissue conditioner containing cetylpyridinium chloride montmorillonite as new antimicrobial agent: Pilot study on antimicrobial activity and biocompatibility. J. Prosthodont. Res. 2020, 64, 436–443. [Google Scholar] [CrossRef]
- Khamis, A.; Saleh, M.M.; Awad, M.I. Synergistic inhibitor effect of cetylpyridinium chloride and other halides on the corrosion of mild steel in 0.5 M H2SO4. Corros. Sci. 2013, 66, 343–349. [Google Scholar] [CrossRef]
- Xu, D.; Li, Y.; Gu, T. A synergistic D-tyrosine and tetrakis hydroxymethyl phosphonium sulfate biocide combination for the mitigation of an SRB biofilm. World J. Microbiol. Biotechnol. 2012, 28, 3067–3074. [Google Scholar] [CrossRef]
- ASTM G1-03(2017)e1; Standard Practice for Preparing, Cleaning, and Evaluating Corrosion Test Specimens, G01.05. ASTM International: West Conshohocken, PA, USA, 2017.
- Wei, B.; Qin, Q.; Bai, Y.; Yu, C.; Xu, J.; Sun, C.; Ke, W. Short-period corrosion of X80 pipeline steel induced by AC current in acidic red soil. Eng. Fail. Anal. 2019, 105, 156–175. [Google Scholar] [CrossRef]
- Cai, Z.; Wei, B.; Xu, J.; Yan, M.; Ren, Y.; Sun, C. Antibacterial and anticorrosion effects of Cetylpyridinium chloride against Desulfovibrio desulfuricans biofilm and X80 steel corrosion. Constr. Build. Mater. 2024, 414, 134932. [Google Scholar] [CrossRef]
- Videla, H.A.; Herrera, L.K. Microbiologically influenced corrosion: Looking to the future. Int. Microbiol. 2005, 8, 169–180. [Google Scholar]
- Moloantoa, K.; Khetsha, Z.; Mochane, M.; Unuofin, J.; Atangana, A.; Cason, E.; van Heerden, E.; Castillo, J. Evaluating the effects of pH and temperature on sulphate-reducing bacteria and modelling of their effects in stirred bioreactors. Environ. Pollut. Bioavailab. 2023, 35, 2257388. [Google Scholar] [CrossRef]
- Xu, J.; Wang, K.X.; Sun, C.; Wang, F.H.; Li, X.M.; Yang, J.X.; Yu, C.K. The effects of sulfate reducing bacteria on corrosion of carbon steel Q235 under simulated disbonded coating by using electrochemical impedance spectroscopy. Corros. Sci. 2011, 53, 1554–1562. [Google Scholar] [CrossRef]
- Liu, H.W.; Gu, T.Y.; Lv, Y.L.; Asif, M.; Xiong, F.P.; Zhang, G.A.; Liu, H.F. Corrosion inhibition and anti-bacterial efficacy of benzalkonium chloride in artificial CO-saturated oilfield produced water. Corros. Sci. 2017, 117, 24–34. [Google Scholar] [CrossRef]
- Wei, B.X.; Xu, J.; Gao, L.Q.; Feng, H.; Wu, J.J.; Sun, C.; Wang, Z.Y.; Ke, W. Nanosecond pulsed laser-assisted modified copper surface structure: Enhanced surface microhardness and microbial corrosion resistance. J. Mater. Sci. Technol. 2022, 107, 111–123. [Google Scholar] [CrossRef]
- Chen, L.J.; Li, J.J.; Wei, B.; Xu, J.; Sun, C. Accelerated microbiologically influenced corrosion of copper by sulfate-reducing bacterium Desulfovibrio desulfovibrio. Mater. Corros. 2024, 75, 1495–1505. [Google Scholar] [CrossRef]
- Hamilton, W.A. Microbially influenced corrosion as a model system for the study of metal microbe interactions: A unifying electron transfer hypothesis. Biofouling 2003, 19, 65–76. [Google Scholar] [CrossRef]
- Yadav, C.K.; Shahi, N.; Adhikari, M.K.; Neupane, S.; Rakesh, B.; Yadav, A.P.; Bhattarai, A. Effect of cetyl pyridinium chloride on corrosion inhibition of mild steel in acidic medium. Int. J. Electrochem. Sci. 2024, 19, 100776. [Google Scholar] [CrossRef]
- Noor, E.A. Comparative Study on the Corrosion Inhibition of Mild Steel by Aqueous Extract of Fenugreek Seeds and Leaves in Acidic Solutions. J. Eng. Appl. Sci. 2008, 3, 23–30. [Google Scholar]
- Kong, L.; Zhang, Z.; Jiao, H.; Liu, Y.; Yang, H. Effect of hydrophobic modification on the anti-microbial induced corrosion of alkali-activated mortar. Constr. Build. Mater. 2005, 458, 139576. [Google Scholar] [CrossRef]
Chemical | NaCl | Na2SO4 | NaHCO3 | CaCl2 | MgSO4 | K2SO4 |
---|---|---|---|---|---|---|
Concentration (g/L) | 7.3 | 4.88 | 2.9 | 0.105 | 0.0375 | 0.007 |
CCPC (mg/L) | 1 d | 14 d |
---|---|---|
0 | 106 | 7.5 × 107 |
10 | 106 | Undetectable |
50 | 106 | Undetectable |
80 | 106 | Undetectable |
CCPC | Time | Rs | Qbc | Rbc | Qdl | Rct | ||
---|---|---|---|---|---|---|---|---|
(d) | (Ω cm2) | (Yo/S sn cm−2) | n | (Ω cm2) | (Yo/S sn cm−2) | n | (Ω cm2) | |
0 | 1 | 11 | 4.86 × 10−4 | 0.59 | 104 | 5.27 × 10−5 | 0.96 | 2.38 × 104 |
3 | 13 | 6.14 × 10−4 | 0.76 | 1646 | 1.88 × 10−4 | 0.74 | 1.34 × 104 | |
5 | 16 | 5.52 × 10−4 | 0.8 | 8 | 2.97 × 10−4 | 0.96 | 1.37 × 104 | |
7 | 14 | 2.53 × 10−4 | 0.8 | 995 | 8.91 × 10−5 | 0.84 | 1.82 × 104 | |
10 | 13 | 4.33 × 10−4 | 0.78 | 157 | 3.66 × 10−4 | 0.78 | 1.62 × 104 | |
14 | 13 | 4.77 × 10−4 | 0.78 | 170 | 2.81 × 10−4 | 0.79 | 1.92 × 104 | |
10 | 1 | 15 | 3.19 × 10−5 | 0.87 | 3333 | 3.44 × 10−5 | 0.54 | 1.1 × 105 |
3 | 12 | 3.06 × 10−5 | 0.66 | 218 | 2.2 × 10−4 | 0.66 | 1.33 × 105 | |
5 | 12 | 7.66 × 10−5 | 0.58 | 195 | 2.06 × 10−4 | 0.7 | 8.69 × 104 | |
7 | 9 | 2.21 × 10−4 | 0.66 | 2389 | 1.58 × 10−5 | 1 | 8.41 × 104 | |
10 | 12 | 2.74 × 10−4 | 0.82 | 969 | 1.14 × 10−4 | 0.93 | 5.88 × 104 | |
14 | 10 | 2 × 10−4 | 0.65 | 787 | 3.98 × 10−5 | 0.91 | 4.84 × 104 | |
50 | 1 | 15 | 8.82 × 10−5 | 0.90 | 873 | 4.477 × 10−5 | 0.58 | 1.54 × 105 |
3 | 16 | 6.513 × 10−5 | 0.86 | 3189 | 7.05 × 10−5 | 0.58 | 1.37 × 105 | |
5 | 2 | 3.66 × 10−5 | 0.42 | 13 | 2.21 × 10−5 | 0.88 | 9.6 × 104 | |
7 | 12 | 5.23 × 10−5 | 0.71 | 1502 | 6.89 × 10−5 | 0.68 | 1.08 × 105 | |
10 | 15 | 2 × 10−4 | 0.79 | 81 | 1.02 × 10−4 | 0.95 | 6.69 × 104 | |
14 | 17 | 1.1 × 10−5 | 0.89 | 1842 | 1.25 × 10−5 | 0.43 | 1.97 × 105 | |
80 | 1 | 6 | 2.93 × 10−5 | 0.47 | 11 | 2.06 × 10−5 | 0.92 | 2.46 × 105 |
3 | 14 | 5.679 × 10−5 | 0.85 | 4680 | 6 × 10−5 | 0.56 | 1.98 × 105 | |
5 | 13 | 3.75 × 10−5 | 0.79 | 775 | 2.9 × 10−5 | 0.56 | 1.88 × 105 | |
7 | 12 | 7.74 × 10−5 | 0.61 | 17 | 2.33 × 10−5 | 0.76 | 2.42 × 105 | |
10 | 15 | 8.62 × 10−5 | 0.82 | 254 | 8.39 × 10−5 | 0.66 | 1.1 × 105 | |
14 | 16 | 1.52 × 10−5 | 0.89 | 5282 | 2.52 × 10−5 | 0.52 | 2.04 × 105 |
CCPC | Time | Rs | Qbc | Rbc | Qdl | Rct | ||
---|---|---|---|---|---|---|---|---|
(d) | (Ω cm2) | (Yo/S sn cm−2) | n | (Ω cm2) | (Yo/S sn cm−2) | n | (Ω cm2) | |
0 | 1 | 14 | 4.81 × 10−4 | 0.83 | 630 | 3.11 × 10−4 | 0.58 | 1.03 × 104 |
3 | 12 | 4.73 × 10−4 | 0.74 | 13 | 8.64 × 10−5 | 1 | 8958 | |
5 | 14 | 8.07 × 10−4 | 0.77 | 118 | 6.35 × 10−5 | 0.89 | 4613 | |
7 | 17 | 3.94 × 10−4 | 0.85 | 6 | 5.17 × 10−4 | 0.91 | 6045 | |
10 | 14 | 7.58 × 10−4 | 0.78 | 107 | 1.84 × 10−4 | 0.9 | 5924 | |
14 | 13 | 7.12 × 10−4 | 0.77 | 110 | 2.6 × 10−4 | 0.89 | 6109 | |
10 | 1 | 15 | 1.68 × 10−4 | 0.78 | 52 | 4.76 × 10−5 | 0.95 | 4.12 × 104 |
3 | 15 | 4.44 × 10−4 | 0.68 | 53 | 5.22 × 10−5 | 1 | 1.84 × 104 | |
5 | 13 | 5.91 × 10−4 | 0.76 | 156 | 1.82 × 10−4 | 0.7 | 1.71 × 104 | |
7 | 14 | 2.9 × 10−4 | 0.75 | 72 | 7.49 × 10−5 | 0.95 | 2.48 × 104 | |
10 | 14 | 3.34 × 10−4 | 0.74 | 18 | 2.4 × 10−4 | 0.92 | 1.84 × 104 | |
14 | 15 | 2.92 × 10−4 | 0.68 | 90 | 6.79 × 10−5 | 0.99 | 2.25 × 104 | |
50 | 1 | 17 | 2.46 × 10−4 | 0.75 | 1490 | 9.81 × 10−5 | 0.52 | 6.25 × 104 |
3 | 14 | 1.74 × 10−4 | 0.85 | 3165 | 1.207 × 10−4 | 0.42 | 4.58 × 104 | |
5 | 13 | 4.59 × 10−4 | 0.81 | 12 | 1.26 × 10−4 | 0.99 | 2.12 × 104 | |
7 | 13 | 2.69 × 10−4 | 0.8 | 703.6 | 8.96 × 10−5 | 0.93 | 3.1 × 104 | |
10 | 14 | 2.27 × 10−4 | 0.82 | 100 | 1.08 × 10−4 | 0.88 | 2.43 × 104 | |
14 | 16 | 4.05 × 10−4 | 0.79 | 577 | 6.27 × 10−5 | 0.94 | 2.6 × 104 | |
80 | 1 | 9 | 1.453 × 10−5 | 0.51 | 8 | 8.91 × 10−6 | 0.9 | 7.9 × 104 |
3 | 17 | 1.25 × 10−4 | 0.87 | 5460 | 1.03 × 10−4 | 0.51 | 8.21 × 104 | |
5 | 14 | 2.62 × 10−4 | 0.77 | 358 | 2.24 × 10−5 | 1 | 3.23 × 104 | |
7 | 12 | 3.02 × 10−4 | 0.8 | 938 | 9.21 × 10−5 | 0.96 | 4.23 × 104 | |
10 | 16 | 3.88 × 10−4 | 0.76 | 98 | 1.89 × 10−4 | 0.86 | 3.05 × 104 | |
14 | 17 | 3.3 × 10−4 | 0.77 | 67 | 2.6 × 10−4 | 0.84 | 3.91 × 104 |
Condition | CCPC (mg/L) | Ecorr (V vs‧SCE) | icorr (μA‧cm−2) | ƞe (%) |
---|---|---|---|---|
Abiotic | 0 | −0.313 | 0.776 | - |
10 | −0.260 | 0.251 | 68 | |
50 | −0.226 | 0.170 | 78 | |
80 | −0.194 | 0.165 | 79 | |
Biotic | 0 | −0.920 | 3.47 | - |
10 | −0.307 | 0.550 | 84 | |
50 | −0.294 | 0.457 | 87 | |
80 | −0.271 | 0.324 | 91 |
Condition | Ccpc (mg/L) | Regions | Element (wt%) | |||
---|---|---|---|---|---|---|
C | O | S | Cu | |||
Abiotic | 0 | 1 | 11.42 | 2.81 | - | 85.77 |
10 | 2 | 13.26 | 3.86 | - | 82.88 | |
50 | 3 | 14.50 | 2.32 | - | 83.18 | |
80 | 4 | 13.44 | 4.37 | - | 82.19 | |
Biotic | 0 | 5 | 4.86 | 4.29 | 6.85 | 84 |
10 | 6 | 9.64 | 4.09 | - | 86.27 | |
50 | 7 | 23.02 | 7.75 | - | 69.23 | |
80 | 8 | 12.12 | 3.87 | - | 84.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, Y.; Liao, B.; Chen, L.; Wei, B.; Xu, J.; Sun, C. Mitigating Sulfate-Reducing Bacteria-Induced Corrosion of Pure Copper in Simulated Oilfield-Produced Water Using Cetylpyridinium Chloride. Coatings 2025, 15, 308. https://doi.org/10.3390/coatings15030308
Hu Y, Liao B, Chen L, Wei B, Xu J, Sun C. Mitigating Sulfate-Reducing Bacteria-Induced Corrosion of Pure Copper in Simulated Oilfield-Produced Water Using Cetylpyridinium Chloride. Coatings. 2025; 15(3):308. https://doi.org/10.3390/coatings15030308
Chicago/Turabian StyleHu, Yong, Bokai Liao, Lijuan Chen, Bo Wei, Jin Xu, and Cheng Sun. 2025. "Mitigating Sulfate-Reducing Bacteria-Induced Corrosion of Pure Copper in Simulated Oilfield-Produced Water Using Cetylpyridinium Chloride" Coatings 15, no. 3: 308. https://doi.org/10.3390/coatings15030308
APA StyleHu, Y., Liao, B., Chen, L., Wei, B., Xu, J., & Sun, C. (2025). Mitigating Sulfate-Reducing Bacteria-Induced Corrosion of Pure Copper in Simulated Oilfield-Produced Water Using Cetylpyridinium Chloride. Coatings, 15(3), 308. https://doi.org/10.3390/coatings15030308