Fabrication of PVTF Electroactive Coatings on PEEK Implant to Provide Surface Potential for Enhancing Osteogenesis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. PEEK Surface Treatment
2.3. Preparation of PVTF Coatings on PEEK
2.4. Characterization of Materials
2.5. Cell Culture
2.6. Cell Viability Assays
2.7. ALP Assay
2.8. Statistical Analysis
3. Results and Discussion
3.1. Characterization of PEEK Surfaces After Treatments
3.2. Characterization of PVTF Coatings
3.3. Electrical and Mechanical Properties of PVTF on PEEK
3.4. Biocompatibility and Osteogenesis of PEEK/PVTF
4. Conclusions
- Physical modification of the PEEK surface effectively enhanced the bonding strength between PEEK and PVTF coatings. These improvements in adhesion were achieved without compromising the electroactive properties of the PVTF coatings. The physical treatments resulted in a significant increase in adhesion strength, making the composite more durable for biomedical applications.
- After polarization, the PEEK/PVTF composite exhibited an increased β-phase content, with a noticeable enhancement in the d33 value. This indicates a substantial improvement in the electroactive properties of the PVTF coatings. Moreover, the surface potential of the PVTF coatings remained stable, ensuring consistent electroactive behavior suitable for osteogenesis.
- The PEEK/PVTF composite demonstrated excellent biocompatibility, promoting cell proliferation and osteogenic differentiation. These favorable biological responses suggest that the PEEK/PVTF composite has strong potential for promoting bone regeneration and could serve as an advanced material for orthopedic implants. However, while our findings suggest that PVTF-coated PEEK implants exhibit enhanced osteogenic differentiation potential, further studies are required to explore their long-term bone integration and the molecular mechanisms involved. Future research should focus on mineralization studies, late-stage osteogenic markers, and in vivo evaluations to provide a more comprehensive assessment of the material’s effectiveness for orthopedic applications.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cauda, V.; Stassi, S.; Bejtka, K.; Canavese, G. Nanoconfinement: An effective way to enhance PVDF piezoelectric properties. ACS Appl. Mater. Interfaces 2013, 5, 6430–6437. [Google Scholar] [CrossRef] [PubMed]
- Poon, K.K.; Wurm, M.C.; Evans, D.M.; Einarsrud, M.-A.; Lutz, R.; Glaum, J. Biocompatibility of (Ba,Ca)(Zr,Ti)O3 piezoelectric ceramics for bone replacement materials. J. Biomed. Mater. Res. Part. B Appl. Biomater. 2020, 108, 1295–1303. [Google Scholar] [CrossRef] [PubMed]
- Sundar, U.; Lao, Z.; Cook-Chennault, K. Investigation of Piezoelectricity and Resistivity of Surface Modified Barium Titanate Nanocomposites. Polymers 2019, 11, 2123. [Google Scholar] [CrossRef] [PubMed]
- Namsheer, K.; Rout, C.S. Conducting polymers: A comprehensive review on recent advances in synthesis, properties and applications. RSC Adv. 2021, 11, 5659–5697. [Google Scholar] [CrossRef]
- Lakard, B. Electrochemical Biosensors Based on Conducting Polymers: A Review. Appl. Sci. 2020, 10, 6614. [Google Scholar] [CrossRef]
- Acri, T.M.; Shin, K.; Seol, D.; Laird, N.Z.; Song, I.; Geary, S.M.; Chakka, J.L.; Martin, J.A.; Salem, A.K. Tissue Engineering for the Temporomandibular Joint. Adv. Healthc. Mater. 2019, 8, 1801236. [Google Scholar] [CrossRef]
- Xue, N.; Ding, X.; Huang, R.; Jiang, R.; Huang, H.; Pan, X.; Min, W.; Chen, J.; Duan, J.-A.; Liu, P.; et al. Bone Tissue Engineering in the Treatment of Bone Defects. Pharmaceuticals 2022, 15, 879. [Google Scholar] [CrossRef] [PubMed]
- Jin, H.; Ji, Y.; Cui, Y.; Xu, L.; Liu, H.; Wang, J. Simvastatin-Incorporated Drug Delivery Systems for Bone Regeneration. ACS Biomater. Sci. Eng. 2021, 7, 2177–2191. [Google Scholar] [CrossRef] [PubMed]
- Jiang, C.; Fu, J.; Zhang, H.; Hua, Y.; Cao, L.; Ren, J.; Zhou, M.; Jiang, F.; Jiang, X.; Ling, S. Self-Reinforcing Ionogel Bioadhesive Interface for Robust Integration and Monitoring of Bioelectronic Devices with Hard Tissues. Adv. Mater. 2024, 2413028. [Google Scholar] [CrossRef] [PubMed]
- D’Alessandro, D.; Ricci, C.; Milazzo, M.; Strangis, G.; Forli, F.; Buda, G.; Petrini, M.; Berrettini, S.; Uddin, M.J.; Danti, S.; et al. Piezoelectric Signals in Vascularized Bone Regeneration. Biomolecules 2021, 11, 1731. [Google Scholar] [CrossRef]
- Jacob, J.; More, N.; Kalia, K.; Kapusetti, G. Piezoelectric smart biomaterials for bone and cartilage tissue engineering. Inflamm. Regen. 2018, 38, 2. [Google Scholar] [CrossRef] [PubMed]
- Todd, E.A.; Mirsky, N.A.; Silva, B.L.; Shinde, A.R.; Arakelians, A.R.L.; Nayak, V.V.; Marcantonio, R.A.; Gupta, N.; Witek, L.; Coelho, P.G. Functional Scaffolds for Bone Tissue Regeneration: A Comprehensive Review of Materials, Methods, and Future Directions. J. Funct. Biomater. 2024, 15, 280. [Google Scholar] [CrossRef]
- Zheng, Y.; Zhao, L.; Li, Y.; Zhang, X.; Zhang, W.; Wang, J.; Liu, L.; An, W.; Jiao, H.; Ma, C. Nanostructure Mediated Piezoelectric Effect of Tetragonal BaTiO3 Coatings on Bone Mesenchymal Stem Cell Shape and Osteogenic Differentiation. Int. J. Mol. Sci. 2023, 24, 4051. [Google Scholar] [CrossRef]
- Wang, Y.; Dargusch, M.S. Optimisation and material considerations of piezoelectric implants for cardiac applications. Curr. Opin. Solid. State Mater. Sci. 2025, 34, 101211. [Google Scholar] [CrossRef]
- Saleem, A.; Frormann, L.; Iqbal, A. High performance thermoplastic composites: Study on the mechanical, thermal, and electrical resistivity properties of carbon fiber-reinforced polyetheretherketone and polyethersulphone. Polym. Compos. 2007, 28, 785–796. [Google Scholar] [CrossRef]
- Wang, F.; Roovers, J.J.M. Functionalization of poly (aryl ether ether ketone)(PEEK): Synthesis and properties of aldehyde and carboxylic acid substituted PEEK. Macromolecules 1993, 26, 5295–5302. [Google Scholar] [CrossRef]
- Gu, X.; Sun, X.; Sun, Y.; Wang, J.; Liu, Y.; Yu, K.; Wang, Y.; Zhou, Y. Bioinspired Modifications of PEEK Implants for Bone Tissue Engineering. Front. Bioeng. Biotechnol. 2021, 8, 631616. [Google Scholar] [CrossRef]
- Eschbach, L.J.I. Nonresorbable polymers in bone surgery. Injury 2000, 31, 22–27. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Ibrahim, M.; Liu, Z.; Yang, H.; Tan, L.; Yang, K. Biofunctional Mg coating on PEEK for improving bioactivity. Bioact. Mater. 2018, 3, 139–143. [Google Scholar] [CrossRef] [PubMed]
- Oyane, A.; Nakamura, M.; Sakamaki, I.; Shimizu, Y.; Miyata, S.; Miyaji, H. Laser-assisted wet coating of calcium phosphate for surface-functionalization of PEEK. PLoS ONE 2018, 13, 206524. [Google Scholar] [CrossRef]
- Cvrček, L.; Krčil, J.; Musílková, J.; Musílková, V.; Bačáková, L.; Nehasil, V.; Denk, F.; Čejka, Z. Nanostructured TiNb coating improves the bioactivity of 3D printed PEEK. Mater. Des. 2022, 224, 111312. [Google Scholar] [CrossRef]
- Li, W.; Sang, L.; Jian, X.; Wang, J. Influence of sanding and plasma treatment on shear bond strength of 3D-printed PEI, PEEK and PEEK/CF. Int. J. Adhes. Adhes. 2020, 100, 102614. [Google Scholar] [CrossRef]
- Liu, C.; Bai, J.; Wang, Y.; Chen, L.; Wang, D.; Ni, S.; Liu, H. The effects of three cold plasma treatments on the osteogenic activity and antibacterial property of PEEK. Dent. Mater. 2021, 37, 81–93. [Google Scholar] [CrossRef]
- Fedel, M.; Micheli, V.; Thaler, M.; Awaja, F. Effect of nitrogen plasma treatment on the crystallinity and self-bonding of polyetheretherketone (PEEK) for biomedical applications. Polym. Adv. Technol. 2020, 31, 240–247. [Google Scholar] [CrossRef]
- Van Horn, M.R.; Beard, R.; Bucklen, B. P6. A roughened 3D-printed surface enhances stem cell proliferation and osteoblast differentiation. Spine J. 2020, 20, S150. [Google Scholar] [CrossRef]
- Fukuda, N.; Kanazawa, M.; Tsuru, K.; Tsuchiya, A.; Sunarso; Toita, R.; Mori, Y.; Nakashima, Y.; Ishikawa, K. Synergistic effect of surface phosphorylation and micro-roughness on enhanced osseointegration ability of poly(ether ether ketone) in the rabbit tibia. Sci. Rep. 2018, 8, 16887. [Google Scholar] [CrossRef] [PubMed]
- Luo, C.; Liu, Y.; Peng, B.; Chen, M.; Liu, Z.; Li, Z.; Kuang, H.; Gong, B.; Li, Z.; Sun, H. PEEK for Oral Applications: Recent Advances in Mechanical and Adhesive Properties. Polymers 2023, 15, 386. [Google Scholar] [CrossRef] [PubMed]
- Ge, Y.; Hu, L.; Liu, J.; Ma, F.; Zhang, J.; Wang, Y.; Tang, B.; Cao, S. Peek@ZIF-8(CEL) as a Novel Bone Implant for Large Defect Repair and Enhanced Bone Healing via a Long-Term Stable Bioactive Releaser. ACS Appl. Mater. Interfaces 2024, 16, 44127–44138. [Google Scholar] [CrossRef] [PubMed]
- Hu, G.; Zhu, Y.; Xu, F.; Ye, J.; Guan, J.; Jiang, Y.; Di, M.; Li, Z.; Guan, H.; Yao, X. Comparison of surface properties, cell behaviors, bone regeneration and osseointegration between nano tantalum/PEEK composite and nano silicon nitride/PEEK composite. J. Biomater. Sci. Polym. Ed. 2022, 33, 35–56. [Google Scholar] [CrossRef]
- Kadiyala, A.K.; Bijwe, J.; Kalappa, P. Investigations on influence of nano and micron sized particles of SiC on performance properties of PEEK coatings. Surf. Coat. Technol. 2018, 334, 124–133. [Google Scholar] [CrossRef]
- Frankenberger, T.; Graw, C.L.; Engel, N.; Gerber, T.; Frerich, B.; Dau, M. Sustainable Surface Modification of Polyetheretherketone (PEEK) Implants by Hydroxyapatite/Silica Coating—An In Vivo Animal Study. Materials 2021, 14, 4589. [Google Scholar] [CrossRef]
- Shi, X.; Wang, Z.; Guo, M.; Wang, Y.; Bi, Z.; Li, D.; Zhang, P.; Liu, J. PRP coating on different modified surfaces promoting the osteointegration of polyetheretherketone implant. Front. Bioeng. Biotechnol. 2023, 11, 1283526. [Google Scholar] [CrossRef] [PubMed]
- Pandey, M.; Mairal, A.; Gupta, H.; Kumar, A.; Bhattacharya, S. Rapid surface modification of PEEK by ambient temperature sulfonation for high shelf-life biomedical applications. Surf. Interfaces 2024, 54, 105117. [Google Scholar] [CrossRef]
- Kumar, M.; Kumari, P. P(VDF-TrFE)/ZnO nanocomposite synthesized by electrospinning: Effect of ZnO nanofiller on physical, mechanical, thermal, rheological and piezoelectric properties. Polym. Bull. 2023, 80, 4859–4878. [Google Scholar] [CrossRef]
- Gutiérrez-Sánchez, G.; Hernando-García, J.; Victor, R.-D.; Dura, O.J.; de la Torre, M.A.L.; Sánchez-Rojas, J.L. Comparative assessment of PVDF and PVDF-TrFE piezoelectric polymers for flexible actuators applications. In Proceedings of the Proc.SPIE; 2017; pp. 148–153. Available online: https://www.spiedigitallibrary.org/conference-proceedings-of-spie/10246/102460N/Comparative-assessment-of-PVDF-and-PVDF-TrFE-piezoelectric-polymers-for/10.1117/12.2266559.short%2031%20May%202017 (accessed on 31 May 2017).
- Mohammadpourfazeli, S.; Arash, S.; Ansari, A.; Yang, S.; Mallick, K.; Bagherzadeh, R. Future prospects and recent developments of polyvinylidene fluoride (PVDF) piezoelectric polymer; fabrication methods, structure, and electro-mechanical properties. RSC Adv. 2023, 13, 370–387. [Google Scholar] [CrossRef]
- Zhang, C.; Liu, W.; Cao, C.; Zhang, F.; Tang, Q.; Ma, S.; Zhao, J.; Hu, L.; Shen, Y.; Chen, L. Modulating Surface Potential by Controlling the β Phase Content in Poly(vinylidene fluoridetrifluoroethylene) Membranes Enhances Bone Regeneration. Adv. Healthc. Mater. 2018, 7, 1701466. [Google Scholar] [CrossRef] [PubMed]
- Barbosa, F.; Alberte, P.S.; Garrudo, F.F.F.; Carvalho, M.S.; Pascoal-Faria, P.; Ferreira, F.C.; Silva, J.C. Piezoelectric PVDF-TrFE/Hydroxyapatite Nanofibers for Bone Tissue Engineering. Mater. Proc. 2022, 8, 66. [Google Scholar] [CrossRef]
- Maghsoudy-Louyeh, S.; Ju, H.S.; Tittmann, B.R. Surface roughness study in relation with hydrophilicity/hydrophobicity of materials using atomic force microscopy. AIP Conf. Proc. 2010, 1211, 1487–1492. [Google Scholar] [CrossRef]
- Ruan, L.; Yao, X.; Chang, Y.; Zhou, L.; Qin, G.; Zhang, X. Properties and Applications of the β Phase Poly(vinylidene fluoride). Polymers 2018, 10, 228. [Google Scholar] [CrossRef]
- Cai, X.; Lei, T.; Sun, D.; Lin, L. A critical analysis of the α, β and γ phases in poly(vinylidene fluoride) using FTIR. RSC Adv. 2017, 7, 15382–15389. [Google Scholar] [CrossRef]
- Zhang, C. Large-Scale Fabrication of High β-Phase PVDF Films with Enhanced Piezoelectric and Electrode Formation Properties. J. Mater. Eng. Perform. 2024, 1–14. [Google Scholar] [CrossRef]
Treatment | Roughness (nm) |
---|---|
400-grit | 450.5 ± 51.5 |
2000-grit | 265.6 ± 25.3 |
5000-grit | 72.7 ± 14.6 |
Silver coating 400-grit | 332.8 ± 36.9 |
Silver coating 2000-grit | 224.9 ± 25.9 |
Silver coating 5000-grit | 46.6 ± 5.7 |
Treatment | Water Contact Angle (degree) |
---|---|
400-grit | 97.6 ± 5.2 |
2000-grit | 88.9 ± 4.6 |
5000-grit | 87.5 ± 7.6 |
Silver coating 400-grit | 57.0 ± 2.8 |
Silver coating 2000-grit | 37.9 ± 4.9 |
Silver coating 5000-grit | 17.4 ± 1.4 |
Treatment | Bonding Strength (KPa) |
---|---|
400-grit | 155.2 ± 9.2 |
2000-grit | 75.0 ± 6.9 |
5000-grit | 61.7 ± 5.8 |
PVTF | 18.9 ± 3.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yee, A.; Xin, X.; Liu, H.; Ma, L.; Cheng, K. Fabrication of PVTF Electroactive Coatings on PEEK Implant to Provide Surface Potential for Enhancing Osteogenesis. Coatings 2025, 15, 261. https://doi.org/10.3390/coatings15030261
Yee A, Xin X, Liu H, Ma L, Cheng K. Fabrication of PVTF Electroactive Coatings on PEEK Implant to Provide Surface Potential for Enhancing Osteogenesis. Coatings. 2025; 15(3):261. https://doi.org/10.3390/coatings15030261
Chicago/Turabian StyleYee, Aotian, Xin Xin, Haoqing Liu, Lanxue Ma, and Kui Cheng. 2025. "Fabrication of PVTF Electroactive Coatings on PEEK Implant to Provide Surface Potential for Enhancing Osteogenesis" Coatings 15, no. 3: 261. https://doi.org/10.3390/coatings15030261
APA StyleYee, A., Xin, X., Liu, H., Ma, L., & Cheng, K. (2025). Fabrication of PVTF Electroactive Coatings on PEEK Implant to Provide Surface Potential for Enhancing Osteogenesis. Coatings, 15(3), 261. https://doi.org/10.3390/coatings15030261