Enhancement of Ferroelectric Properties of Ni-Substituted Pb2Fe2O5 Thin Films Synthesized by Reactive Magnetron Sputtering Deposition
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Huang, W.; Yang, S.; Li, X. Multiferroic heterostructures and tunneling junctions. J. Mater. 2015, 1, 263–284. [Google Scholar] [CrossRef]
- Khomskii, D.I. Multiferroics: Different ways to combine magnetism and ferroelectricity. J. Magn. Magn. Mater. 2006, 306, 1–8. [Google Scholar] [CrossRef]
- Roy, S.; Majumder, S.B. Recent advances in multiferroic thin films and composites. J. Alloys Compd. 2012, 538, 153–159. [Google Scholar] [CrossRef]
- Sekine, Y.; Akiyoshi, R.; Hayami, S. Recent advances in ferroelectric metal complexes. Coord. Chem. Rev. 2022, 469, 214663. [Google Scholar] [CrossRef]
- Amirov, A. Chapter 15—Multiferroic, magnetic, and magnetoelectric nanomaterials for medical applications. In Magnetic Materials and Technologies for Medical Applications; Tishin, A.M., Ed.; Woodhead Publishing: Sawston, UK, 2022; pp. 469–484. [Google Scholar]
- Pati, D.K.; Das, P.R.; Parida, B.N.; Padhee, R. Multifunctional characterization of multiferroic [Pb(Fe0.5Nb0.5)O3]0.5—[(Ca0.2Sr0.8)TiO3]0.5 for storage and photocatalytic applications. Ceram. Int. 2022, 48, 19344–19357. [Google Scholar] [CrossRef]
- Rahul, M.T.; Chacko, S.K.; Vinodan, K.; Raneesh, B.; Philip, K.A.; Bhadrapriya, B.C.; Bose, B.A.; Kalarikkal, N.; Rouxel, D.; Viswanathan, P.; et al. Multiferroic and energy harvesting characteristics of P(VDF-TrFE)-CuFe2O4 flexible films. Polymer 2022, 252, 124910. [Google Scholar] [CrossRef]
- Shah, J.; Verma, K.C.; Agarwal, A.; Kotnala, R.K. Novel application of multiferroic compound for green electricity generation fabricated as hydroelectric cell. Mater. Chem. Phys. 2020, 239, 122068. [Google Scholar] [CrossRef]
- Singh Pawar, M.; Raj, A.; Kumar Singh, A.; Tuli, V.; Anshul, A.; Kumar, M. Lead-free ‘Ca’ doped Bi0.80La0.20FeO3 multiferroic material for solar cell applications. Mater. Today Proc. 2022, 67, 713–718. [Google Scholar] [CrossRef]
- Vopson, M.M. Fundamentals of Multiferroic Materials and Their Possible Applications. Crit. Rev. Solid State Mater. Sci. 2015, 40, 223–250. [Google Scholar] [CrossRef]
- Van Aken, B.B.; Palstra, T.T.M.; Filippetti, A.; Spaldin, N.A. The origin of ferroelectricity in magnetoelectric YMnO3. Nat. Mater. 2004, 3, 164–170. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, K.; Nishikawa, M.; Sakaguchi, H.; Veis, M.; Ishibashi, T. Preparation and characterization of YMnO3 thin films by metal–organic decomposition. Jpn. J. Appl. Phys. 2023, 62, SB1005. [Google Scholar] [CrossRef]
- López-Alvarez, M.Á.; Silva-Jara, J.M.; Silva-Galindo, J.G.; Reyes-Becerril, M.; Velázquez-Carriles, C.A.; Macías-Rodríguez, M.E.; Macías-Lamas, A.M.; García-Ramírez, M.A.; López de Alba, C.A.; Reynoso-García, C.A. Determining the Photoelectrical Behavior and Photocatalytic Activity of an h-YMnO3 New Type of Obelisk-like Perovskite in the Degradation of Malachite Green Dye. Molecules 2023, 28, 3932. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Tan, G.; Gu, L.; Yao, Y.; Jin, C.; Wang, Y.; Duan, X.; Yu, R. Direct Observation of Multiferroic Vortex Domains in YMnO3. Sci. Rep. 2013, 3, 2741. [Google Scholar] [CrossRef] [PubMed]
- Endichi, A.; Bouhani, H.; Zaari, H.; Balli, M.; Mounkachi, O.; El Kenz, A.; Benyoussef, A.; Mangin, S. Electronic and magnetic properties of the multiferroic TbMn2O5. Appl. Phys. A 2020, 126, 410. [Google Scholar] [CrossRef]
- Tolédano, P.; Schranz, W.; Krexner, G. Induced ferroelectric phases in TbMn2O5. Phys. Rev. B 2009, 79, 144103. [Google Scholar] [CrossRef]
- Ricca, C.; Berkowitz, D.; Aschauer, U. Ferroelectricity promoted by cation/anion divacancies in SrMnO3. J. Mater. Chem. C 2021, 9, 13321–13330. [Google Scholar] [CrossRef] [PubMed]
- Windsor, Y.W.; Ramakrishnan, M.; Rettig, L.; Alberca, A.; Lippert, T.; Schneider, C.W.; Staub, U. Multiple magnetic ordering phenomena in multiferroic o-HoMnO3. Phys. Rev. B 2020, 102, 214423. [Google Scholar] [CrossRef]
- Hanif, S.; Hassan, M.; Riaz, S.; Atiq, S.; Hussain, S.S.; Naseem, S.; Murtaza, G. Structural, magnetic, dielectric and bonding properties of BiMnO3 grown by co-precipitation technique. Results Phys. 2017, 7, 3190–3195. [Google Scholar] [CrossRef]
- Wu, J.; Fan, Z.; Xiao, D.; Zhu, J.; Wang, J. Multiferroic bismuth ferrite-based materials for multifunctional applications: Ceramic bulks, thin films and nanostructures. Prog. Mater. Sci. 2016, 84, 335–402. [Google Scholar] [CrossRef]
- Dedi; Idayanti, N.; Kristiantoro, T.; Alam, G.F.N.; Sudrajat, N. Magnetic properties of cobalt ferrite synthesized by mechanical alloying. AIP Conf. Proc. 2018, 1964, 020003. [Google Scholar] [CrossRef]
- Kim, Y.J.; Konishi, S.; Hayasaka, Y.; Kakeya, I.; Tanaka, K. Magnetic and electrical properties of LuFe2O4 epitaxial thin films with a self-assembled interface structure. CrystEngComm 2020, 22, 1096–1105. [Google Scholar] [CrossRef]
- Beklešovas, B.; Stankus, V.; Link, J.; Stern, R. Structural, ferroelectric and magnetic properties of lead ferrite (Pb2Fe2O5) thin films synthesized by reactive magnetron deposition. Thin Solid Film. 2020, 708, 138124. [Google Scholar] [CrossRef]
- Hadermann, J.; Abakumov, A.M.; Nikolaev, I.V.; Antipov, E.V.; Van Tendeloo, G. Local structure of perovskite-based “Pb2Fe2O5”. Solid State Sci. 2008, 10, 382–389. [Google Scholar] [CrossRef]
- Wang, M.; Tan, G. Multiferroic properties of Pb2Fe2O5 ceramics. Mater. Res. Bull. 2011, 46, 438–441. [Google Scholar] [CrossRef]
- Sinha, A.K.; Bhushan, B.; Jagannath; Sharma, R.K.; Sen, S.; Mandal, B.P.; Meena, S.S.; Bhatt, P.; Prajapat, C.L.; Priyam, A.; et al. Enhanced dielectric, magnetic and optical properties of Cr-doped BiFeO3 multiferroic nanoparticles synthesized by sol-gel route. Results Phys. 2019, 13, 102299. [Google Scholar] [CrossRef]
- Kim, J.K.; Kim, S.S.; Kim, W.J.; Bhalla, A.S.; Guo, R. Enhanced ferroelectric properties of Cr-doped BiFeO3 thin films grown by chemical solution deposition. Appl. Phys. Lett. 2006, 88, 132901. [Google Scholar] [CrossRef]
- Wang, Y.; Nan, C.W. Site modification in BiFeO3 thin films studied by Raman spectroscopy and piezoelectric force microscopy. J. Appl. Phys. 2008, 103, 114104. [Google Scholar] [CrossRef]
- Liu, H.; Liu, Z.; Yao, K. Improved electric properties in BiFeO3 films by the doping of Ti. J. Sol-Gel Sci. Technol. 2007, 41, 123–128. [Google Scholar] [CrossRef]
- Singh, S.K.; Ishiwara, H.; Maruyama, K. Room temperature ferroelectric properties of Mn-substituted BiFeO3 thin films deposited on Pt electrodes using chemical solution deposition. Appl. Phys. Lett. 2006, 88, 262908. [Google Scholar] [CrossRef]
- Singh, S.K.; Menou, N.; Funakubo, H.; Maruyama, K.; Ishiwara, H. (111)-textured Mn-substituted BiFeO3 thin films on SrRuO3/Pt/Ti/SiO2/Si structures. Appl. Phys. Lett. 2007, 90, 242914. [Google Scholar] [CrossRef]
- Wen, Z.; Hu, G.; Fan, S.; Yang, C.; Wu, W.; Zhou, Y.; Chen, X.; Cui, S. Effects of annealing process and Mn substitution on structure and ferroelectric properties of BiFeO3 films. Thin Solid Film. 2009, 517, 4497–4501. [Google Scholar] [CrossRef]
- Hoque, M.M.; Islam, M.T.; Islam, M.R.; Zubair, M.A. Effective bandgap tuning with non-trivial modulation in room temperature magnetic and electrical responses of low level Ba–Cr co-substituted BiFeO3 nanoparticles. Ceram. Int. 2022, 48, 19583–19596. [Google Scholar] [CrossRef]
- Tefera Kebede, M.; Devi, S.; Dillu, V.; Chauhan, S. Effects of Sm and Cr co-doping on structural, magnetic, optical and photocatalytic properties of BiFeO3 nanoparticles. Mater. Sci. Eng. B 2022, 283, 115859. [Google Scholar] [CrossRef]
- Beklešovas, B.; Iljinas, A.; Stankus, V.; Čyvienė, J.; Andrulevičius, M.; Ivanov, M.; Banys, J. Structural, Morphologic, and Ferroelectric Properties of PZT Films Deposited through Layer-by-Layer Reactive DC Magnetron Sputtering. Coatings 2022, 12, 717. [Google Scholar] [CrossRef]
- Iljinas, A.; Stankus, V. Structural and ferroelectric properties of bismuth ferrite thin films deposited by direct current reactive magnetron sputtering. Thin Solid Film. 2016, 601, 106–110. [Google Scholar] [CrossRef]
- Beklešovas, B.; Stankus, V.; Abakevičienė, B.; Link, J.; Stern, R.; Plyushch, A.; Banys, J.; Čyvienė, J.; Girčys, R.; Bašinskas, M.; et al. Synthesis and Characterization of Cr-Doped Pb2Fe2O5 Thin Films by Reactive Magnetron Sputtering. ECS J. Solid State Sci. Technol. 2023, 12, 103014. [Google Scholar] [CrossRef]
- Beklešovas, B.; Stankus, V.; Iljinas, A.; Marcinauskas, L. Ferroelectric and Structural Properties of Cobalt-Doped Lead Ferrite Thin Films Formed by Reactive Magnetron Sputtering. Crystals 2024, 14, 721. [Google Scholar] [CrossRef]
- Bernhardt, G.; Silvestre, C.; LeCursi, N.; Moulzolf, S.C.; Frankel, D.J.; Lad, R.J. Performance of Zr and Ti adhesion layers for bonding of platinum metallization to sapphire substrates. Sens. Actuators B Chem. 2001, 77, 368–374. [Google Scholar] [CrossRef]
- Coulibaly, M.D.; Borderon, C.; Renoud, R.; Gundel, H.W. Enhancement of PbZrO3 polarization using a Ti seed layer for energy storage application. Thin Solid Film. 2020, 716, 138432. [Google Scholar] [CrossRef]
- Jun, Y.U.; Gang, P.; Yunbo, W.; Longhai, W.; Jia, L.I.; Junxiong, G.A.O. The effect of seeding layers on ferroelectric properties of PTZT thin films. Integr. Ferroelectr. 2006, 85, 59–66. [Google Scholar] [CrossRef]
- Gong, W.; Li, J.-F.; Chu, X.; Gui, Z.; Li, L. Preparation and characterization of sol–gel derived (100)-textured Pb(Zr,Ti)O3 thin films: PbO seeding role in the formation of preferential orientation. Acta Mater. 2004, 52, 2787–2793. [Google Scholar] [CrossRef]
- Delimova, L.A.; Guschina, E.V.; Yuferev, V.S.; Grekhov, I.V.; Seregin, D.S.; Vorotilov, K.A.; Sigov, A.S. Electrophysical Properties of Integrated Ferroelectric Capacitors Based on Sol-Gel PZT Films. Ferroelectrics 2015, 484, 32–42. [Google Scholar] [CrossRef]
- Kumar, Y.; Mohiddon, M.; Srivastava, A.; Yadav, K.L. Effect of Ni doping on structural and dielectric properties of BaTiO3. Indian J. Eng. Mater. Sci. 2009, 16, 390. [Google Scholar]
- Akhil Raman, T.S.; Nair, V.R.; Raju, K.C.J. Effect of Nickel and Cobalt co-substitution on the structural and dielectric properties of Barium Titanate ceramics. J. Mater. Sci. Mater. Electron. 2020, 31, 21747–21757. [Google Scholar] [CrossRef]
- Gil, D.M.; Nieva, G.; Franco, D.G.; Gómez, M.I.; Carbonio, R.E. Lead nitroprusside: A new precursor for the synthesis of the multiferroic Pb2Fe2O5, an anion-deficient perovskite. Mater. Chem. Phys. 2013, 141, 355–361. [Google Scholar] [CrossRef]
- Thongrit, P.; Chananonnawathorn, C.; Horprathum, M.; Triamnak, N.; Lertvanithphol, T.; Eitssayeam, S.; Pengpat, K.; Bintachitt, P. Improving the microstructure and properties of PZT thin films via annealing prepared by RF magnetron sputtering using Pb(Zr0.52Ti0.48)O3 target. Ceram. Int. 2023, 49, 12912–12924. [Google Scholar] [CrossRef]
- Abakumov, A.M.; Hadermann, J.; Van Tendeloo, G.; Antipov, E.V. Chemistry and Structure of Anion-Deficient Perovskites with Translational Interfaces. J. Am. Ceram. Soc. 2008, 91, 1807–1813. [Google Scholar] [CrossRef]
- Jeongok, C.; Jeungsun, A.; Lee, K. Multiferroic BiFeO3 Thin Films Prepared by Using a Conventional RF Magnetron Sputtering Method. J. Korean Phys. Soc. 2009, 54, 844–848. [Google Scholar] [CrossRef]
- Qi, X.; Tsai, P.-C.; Chen, Y.-C.; Lin, Q.-R.; Huang, J.-C.-A.; Chang, W.-C.; Chen, I.-G. Optimal growth windows of multiferroic BiFeO3 films and characteristics of ferroelectric domain structures. Thin Solid Film. 2009, 517, 5862–5866. [Google Scholar] [CrossRef]
- Cartwright, J.H.E.; Escribano, B.; Piro, O.; Sainz-Diaz, C.I.; Sánchez, P.A.; Sintes, T. Ice Film Morphologies and the Structure Zone Model. AIP Conf. Proc. 2008, 982, 696–701. [Google Scholar] [CrossRef]
- Kaiser, N. Review of the fundamentals of thin-film growth. Appl. Opt. 2002, 41, 3053–3060. [Google Scholar] [CrossRef] [PubMed]
- Atiq, S.; Fatima, A.; Khalid, M.; Hassan, A.; Mustafa, G.M.; Siddiqi, S.A.; Naseem, S. Multifunctionality of magnetoelectrically coupled Ni/Cr co-doped BiFeO3 multiferroics. J. Alloys Compd. 2019, 789, 400–408. [Google Scholar] [CrossRef]
- Annapu Reddy, V.; Pathak, N.P.; Nath, R. Enhanced magnetoelectric coupling in transition-metal-doped BiFeO3 thin films. Solid State Commun. 2013, 171, 40–45. [Google Scholar] [CrossRef]
- Hao, S.; Yao, M.; Vitali-Derrien, G.; Gemeiner, P.; Otoničar, M.; Ruello, P.; Bouyanfif, H.; Janolin, P.-E.; Dkhil, B.; Paillard, C. Optical absorption by design in a ferroelectric: Co-doping in BaTiO3. J. Mater. Chem. C 2022, 10, 227–234. [Google Scholar] [CrossRef]
- Peng, H.; Wu, T.; Liu, Z.; Fu, Z.; Wang, D.; Hao, Y.; Xu, F.; Wang, G.; Chu, J. High-entropy relaxor ferroelectric ceramics for ultrahigh energy storage. Nat. Commun. 2024, 15, 5232. [Google Scholar] [CrossRef] [PubMed]
- Duong, N.X.; Bae, J.-S.; Jeon, J.; Lim, S.Y.; Oh, S.H.; Ullah, A.; Sheeraz, M.; San Choi, J.; Ko, J.-H.; Yang, S.M.; et al. Polymorphic phase transition in BaTiO3 by Ni doping. Ceram. Int. 2019, 45, 16305–16310. [Google Scholar] [CrossRef]
Sample | t, °C | Thickness, nm | Grain Size, nm | Crystallite Size, nm | Ni Concentration | Pr, μC/cm2 | Ec, kV/m | ||
---|---|---|---|---|---|---|---|---|---|
by Mass | by EDS | ||||||||
x(Ni2O3), wt.% | n, at% | n, at% | |||||||
PFONi5 | 500 | 840 | 245 | 27 | 5 | 10 | 9.3 | 58.7 | 85.7 |
PFONi5 | 550 | 550 | 235 | 36 | 5 | 10 | 9.3 | 60.1 | 85.6 |
PFONI5 | 600 | 410 | 99 | 51 | 5 | 10 | 9.3 | 66.7 | 102.9 |
PFONi3 | 550 | 550 | 235 | 34 | 3 | 6 | 4.8 | 53.3 | 64 |
PFONi10 | 550 | 550 | 235 | 37 | 10 | 20 | 21.2 | 63.2 | 86 |
PFO [23] | 550 | 550 | 243 | 16 | 0 | 0 | 0 | 49.6 | 42.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Beklešovas, B.; Stankus, V.; Iljinas, A.; Balčiūnaitė, U. Enhancement of Ferroelectric Properties of Ni-Substituted Pb2Fe2O5 Thin Films Synthesized by Reactive Magnetron Sputtering Deposition. Coatings 2025, 15, 143. https://doi.org/10.3390/coatings15020143
Beklešovas B, Stankus V, Iljinas A, Balčiūnaitė U. Enhancement of Ferroelectric Properties of Ni-Substituted Pb2Fe2O5 Thin Films Synthesized by Reactive Magnetron Sputtering Deposition. Coatings. 2025; 15(2):143. https://doi.org/10.3390/coatings15020143
Chicago/Turabian StyleBeklešovas, Benas, Vytautas Stankus, Aleksandras Iljinas, and Ugnė Balčiūnaitė. 2025. "Enhancement of Ferroelectric Properties of Ni-Substituted Pb2Fe2O5 Thin Films Synthesized by Reactive Magnetron Sputtering Deposition" Coatings 15, no. 2: 143. https://doi.org/10.3390/coatings15020143
APA StyleBeklešovas, B., Stankus, V., Iljinas, A., & Balčiūnaitė, U. (2025). Enhancement of Ferroelectric Properties of Ni-Substituted Pb2Fe2O5 Thin Films Synthesized by Reactive Magnetron Sputtering Deposition. Coatings, 15(2), 143. https://doi.org/10.3390/coatings15020143