Combustion Wave Properties of Normal Zone Propagation Induced by Micro-Sized Magnetic Cumulation in Thin YBaCuO Films
Abstract
:1. Introduction
2. Modeling of Micro-Sized Magnetic Cumulation Induced by S State of Type II Superconductor with Subsequent N Zone Propagation
2.1. Initial Conditions of the Magnetic Cumulation by S Currents
2.2. Solution of the Heat Conduction Equation to Determine the Parameters of the Propagation of the N Zone in the Absence of Banding Instability
2.2.1. Solution of Heat Conduction Equation with the First-Order Boundary Condition
2.2.2. Solution of Heat Conduction Equation with the Second-Order (Neuman) Boundary Condition
2.2.3. N Zone Propagation in the Case When λeff Equals 1.16 μm
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tavakoli, F.; Davis, S.H.; Kavehpour, H.P. Freezing of supercooled water drops on cold solid substrates: Initiation and mechanism. J. Coat. Technol. Res. 2015, 12, 869–875. [Google Scholar] [CrossRef]
- Courtney, W.G.; Forshey, D.R. Condensation of water via rarefaction wave. Phys. Fluids 1978, 21, 1086. [Google Scholar] [CrossRef]
- Gardiner, W.C. Shock tube studies of combustion chemistry. In Shock Waves; Takayama, K., Ed.; Springer: Berlin/Heidelberg, Germany, 1992; pp. 49–60. [Google Scholar] [CrossRef]
- Ferri, A. (Ed.) Fundamental Data Obtained from Shock-Tube Experiments; Pergamon Press: New York, NY, USA, 1961. [Google Scholar]
- Emelianov, A.V.; Eremin, A.V.; Fortov, V.E. Chemical condensation wave initiating oxygen-free combustion and detonation. Russ. J. Phys. Chem. B 2021, 15, 299–306. [Google Scholar] [CrossRef]
- Dresner, L. Normal zone propagation. In Stability of Superconductors, Selected Topics in Superconductivity; Springer: Boston, MA, USA, 2002; pp. 83–99. [Google Scholar] [CrossRef]
- Colangelo, D.; Dutoit, B. Analysis of the influence of the normal zone propagation velocity on the design of resistive fault current limiters. Supercond. Sci. Technol. 2014, 27, 124005. [Google Scholar] [CrossRef]
- Tailanov, N.A. Thermomagnetic shock waves in the vortex state in type-II superconductors. In Topics in Superconductivity Research; Martins, B.P., Ed.; Nova Science Publishers: Hauppauge, NY, USA, 2005; pp. 37–59. [Google Scholar]
- Taylanov, N.A. On the stability of thermomagnetic waves in type II superconductors. Supercond. Sci. Technol. 2001, 14, 326–328. [Google Scholar] [CrossRef]
- Oane, M.; Taca, M.; Tsao, S.L. Two Temperature Model for Metals: A New “Radical” Approach. Lasers Eng. 2013, 24, 105–113. [Google Scholar]
- Majchrzak, E.; Poteralska, J. Numerical analysis of short-pulse laser interactions with thin metal film. Arch. Foundry Eng. 2010, 10, 123–128. [Google Scholar]
- Zhang, Y.; Tzou, D.Y.; Chen, J.K. Micro- and Nanoscale Heat Transfer in Femtosecond Laser Processing of Metals. In High-Power and Femtosecond Lasers: Properties, Materials and Applications, Chapter 5; Barret, P.-H., Palmer, M., Eds.; Nova Science Publishers, Inc.: New York, NY, USA, 2009; pp. 159–206. [Google Scholar]
- Gaudio, P.; Montanari, R.; Pakhomova, E.; Richetta, M.; Varone, A. W-1% La2O3 Submitted to a Single Laser Pulse: Effect of Particles on Heat Transfer and Surface Morphology. Metals 2018, 8, 389. [Google Scholar] [CrossRef]
- Pearl, J. Current distribution in superconducting films carrying quantized fluxoids. Appl. Phys. Lett. 1964, 5, 65–66. [Google Scholar] [CrossRef]
- Kiprijanovič, O.; Ardaravičius, L. Descriptive model of the transition from superconducting to normal state in thin high quality YBaCuO films by nanosecond electrical pulses. Thin Solid Film. 2022, 748, 139159. [Google Scholar] [CrossRef]
- Krasnov, V.M.; Katterwe, S.-O.; Rydh, A. Signatures of the electronic nature of pairing in high-Tc superconductors obtained by non-equilibrium boson spectroscopy. Nat. Commun. 2013, 4, 2970. [Google Scholar] [CrossRef] [PubMed]
- Ardaravičius, L.; Kiprijanovič, O. Detailed look into the unstable S-N border during propagation of the N-zone into the thin YBaCuO film. Phys. Scr. 2023, 98, 055924. [Google Scholar] [CrossRef]
- Semenov, A.D.; Gol’tsman, G.N.; Sobolewski, R. Hot-Electron Effect in Superconductors and Its Applications for Radiation Sensors. Supercond. Sci. Tech. 2002, 15, R1. [Google Scholar] [CrossRef]
- Coslovich, G.; Giannetti, C.; Cilento, F.; Dal Conte, S.; Ferrini, G.; Galinetto, P.; Parmigiani, F. Evidence for a photoinduced nonthermal superconducting-to-normal-state phase transition in overdoped Bi2Sr2Ca0.92 Y0.08 Cu2O8+δ. Phys. Rev. B 2011, 83, 064519. [Google Scholar] [CrossRef]
- Gray, K.E.; Fowler, D.E. A superconducting fault-current limiter. J. Appl. Phys. 1978, 49, 2546–2549. [Google Scholar] [CrossRef]
- Anwar, M.S.; Latif, A.; Iqbal, M.; Rafique, M.S.; Khaleeq-Ur-Rahman, M.; Siddique, S. Theoretical model for heat conduction in metals during interaction with ultra short laser pulse. Laser Part. Beams 2006, 24, 347–353. [Google Scholar] [CrossRef]
- Kiprijanovič, O.; Ardaravičius, L.; Gradauskas, J.; Šimkevičius, Č.; Keršulis, S.; Ašmontas, S. Instability, magnetic flux trapping and cumulative effect during pulsed S-N switching of thin high quality YBaCuO films. Supercond. Sci. Technol. 2020, 33, 095013. [Google Scholar] [CrossRef]
- Majchrzak, E. Parabolic and hyperbolic two-temperature models of microscopic heat transfer. comparison of numerical solutions. In Materials Science Forum; Trans Tech Publications Ltd.: Wollerau, Switzerland, 2012; Volume 706–709, pp. 1454–1459. [Google Scholar] [CrossRef]
- Sharon, E.; Gross, S.; Fineberg, J. Local crack branching as a mechanism for instability in dynamic fracture. Phys. Rev. Lett. 1995, 74, 5096. [Google Scholar] [CrossRef]
- Naimark, O.; Barannikov, V.; Davydova, M.; Plekhov, O.; Uvarov, S. Crack propagation: Dynamic stochasticity and scaling. Tech. Phys. Lett. 2000, 26, 254–258. [Google Scholar] [CrossRef]
- Ardaravičius, L.; Keršulis, S.; Kiprijanovič, O.; Šimkevičius, Č.; Vengalis, B. Fast damaging processes in the TaN thin film absorbers under action of nanosecond electrical pulses. Intern. J. Struct. Integr. 2016, 7, 607–616. [Google Scholar] [CrossRef]
- Fujishiro, H.; Tateiwa, T.; Fujiwara, A.; Oka, T.; Hayashi, H. Higher trapped field over 5 T on HTSC bulk by modified pulse field magnetizing. Phys. C Supercond. Its Appl. 2006, 445–448, 334–338. [Google Scholar] [CrossRef]
- Rhoderick, E.; Wilson, E. Current Distribution in Thin Superconducting Films. Nature 1962, 194, 1167–1168. [Google Scholar] [CrossRef]
- Prokof’ev, D. Distribution of the magnetic field induced by a current passing through slabs in the superconducting and normal states. Tech. Phys. 2006, 51, 675–682. [Google Scholar] [CrossRef]
- Berdiyorov, G.; Harrabi, K.; Oktasendra, F.; Gasmi, K.; Mansour, A.I.; Maneval, J.P.; Peeters, F.M. Dynamics of current-driven phase-slip centers in superconducting strips. Phys. Rev. B 2014, 90, 054506. [Google Scholar] [CrossRef]
λeff, μm | r0, μm | j0 (S), A/m2 | B0, T | Φ0 = Φ1, Vb |
---|---|---|---|---|
2.45 | 5 | 5.5 × 1011 | 21 × 10−3 | 1.62 × 10−12 |
1.64 | 3.8 | 9 × 1011 | 30 × 10−3 | 1.39 × 10−12 |
1.16 | 3.1 | 15 × 1011 | 47 × 10−3 | 1.4 × 10−12 |
λeff, μm | r1, μm | j1 (S), A/m2 | B1, T | κ Coeff. of Cumulat. | j1(N), A/m2 | ΔT + 80, K | Heating-Up Time, ps |
---|---|---|---|---|---|---|---|
2.45 | 1.5 | 2.5 × 1012 | 0.228 | 11 | 9.42 × 1011 | 520 | 32 |
1.64 | 1.2 | 3.8 × 1012 | 0.308 | 10.1 | 9.8 × 1011 | 670 | 39 |
1.16 | 0.5 | 16 × 1012 | 1.8 | 38 | 1.08 × 1012 | 1142 | 57.4 |
λeff, μm | Tel, K | Ael J/m3K2 | cel, J/kgK | ael m2/s |
---|---|---|---|---|
2.45 | 780 | 320 | 39.62 | 2.89 × 0−5 |
1.64 | 1005 | 300 | 47.86 | 2.5 × 10−5 |
λeff, μm | Jmin (N), A/m2 | vmin, m/s | Jmax (N), A/m2 | vmax, m/s | Step Number at λeff |
---|---|---|---|---|---|
2.45 | 9.42 × 1011 | 516.1 | 2.15 × 1012 | 2.66 × 103 | 159 |
1.64 | 9.8 × 1011 | 256.4 | 2.0 × 1012 | 1.11 × 103 | 164 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kiprijanovič, O.; Ardaravičius, L. Combustion Wave Properties of Normal Zone Propagation Induced by Micro-Sized Magnetic Cumulation in Thin YBaCuO Films. Coatings 2025, 15, 134. https://doi.org/10.3390/coatings15020134
Kiprijanovič O, Ardaravičius L. Combustion Wave Properties of Normal Zone Propagation Induced by Micro-Sized Magnetic Cumulation in Thin YBaCuO Films. Coatings. 2025; 15(2):134. https://doi.org/10.3390/coatings15020134
Chicago/Turabian StyleKiprijanovič, Oleg, and Linas Ardaravičius. 2025. "Combustion Wave Properties of Normal Zone Propagation Induced by Micro-Sized Magnetic Cumulation in Thin YBaCuO Films" Coatings 15, no. 2: 134. https://doi.org/10.3390/coatings15020134
APA StyleKiprijanovič, O., & Ardaravičius, L. (2025). Combustion Wave Properties of Normal Zone Propagation Induced by Micro-Sized Magnetic Cumulation in Thin YBaCuO Films. Coatings, 15(2), 134. https://doi.org/10.3390/coatings15020134