Degradation and Protection of Wooden Cultural Relics: A Mini Review
Abstract
1. Introduction
2. Global Research Statistics on Degradation and Protection of Wooden Cultural Relics
3. Degradation and Characterization of Wooden Cultural Relics
3.1. Degradation Mechanisms
3.2. Factors Affecting Degradation
3.3. Characterization of Degradation
4. Protection Strategies
4.1. Stabilization, Reinforcement, and Dehydration-Drying Techniques
4.2. Biomimetic Hydrophobic Surface Protection
4.3. Surface Functionalization Technology of Nanomaterials
5. Prospect
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zheng, S.J.; Tang, W.; Tong, J.H.; Cao, K.H.; Yu, H.J.; Xie, L.K. Innovative Treatment of Ancient Architectural Wood Using Polyvinyl Alcohol and Methyltrimethoxysilane for Improved Waterprooffng, Dimensional Stability, and Self-Cleaning Properties. Forests 2024, 15, 978. [Google Scholar] [CrossRef]
- Hon, D.N.S. Weathering and photochemistry of wood. In Wood and Cellulosic Chemistry; Hon, D.N.S., Shiraishi, N., Eds.; Marcel Dekker Inc.: New York, NY, USA, 2001; pp. 512–546. [Google Scholar]
- Derbyshire, H.; Miller, E.R. Photodegradation of wood during solar irradiation. Holz. Roh-Werkst. 1981, 39, 341–350. [Google Scholar] [CrossRef]
- Feist, W.C.; Hon, D.N.S. Chemistry of weathering and protection. In The Chemistry of Solid Wood; Rowell, R.M., Ed.; American Chemical Society: Washington, DC, USA, 1984; pp. 401–451. [Google Scholar]
- Zhou, T.; Liu, H. Research progress of wood cell wall modification and functional improvement: A review. Materials 2022, 15, 1598. [Google Scholar] [CrossRef]
- Nejad, M.; Cooper, P. Exterior wood coatings. In Wood in Civil Engineering; Concu, G., Ed.; IntechOpen: London, UK, 2017; pp. 145–170. [Google Scholar] [CrossRef]
- Zhang, H.Y.; Shen, D.W.; Zhang, Z.G.; Kang, H.L.; Ma, Q.L. Comparison of iron deposits removing material from the marine archaeological wood of Nanhai I shipwreck. J. Cult. Herit. 2024, 66, 59–67. [Google Scholar] [CrossRef]
- Shin, S.J.; Schroeder, L.R.; Lai, Y.Z. Impact of Residual Extractives on Lignin Determination in Kraft Pulps. J. Wood. Chem. Technol. 2005, 24, 139–151. [Google Scholar] [CrossRef]
- Chen, C.; Kuang, Y.; Zhu, S.; Burgert, I.; Keplinger, T.; Gong, A.; Li, T.; Berglund, L.; Eichhorn, S.J.; Hu, L. Structure–property–function relationships of natural and engineered wood. Nat. Rev. Mater. 2020, 5, 642–666. [Google Scholar] [CrossRef]
- Sjostrom, E. Wood Chemistry: Fundamentals and Applications; Elsevier: Amsterdam, The Netherlands, 1993. [Google Scholar]
- Willems, W. Heuristic study on the interaction between heat exchange and slow relaxation processes during wood moisture content changes. Holzforschung 2021, 75, 303–312. [Google Scholar] [CrossRef]
- Melro, E.; Filipe, A.; Sousa, D.; Valente, A.J.M.; Romano, A.; Antunes, F.E.; Medronho, B. Dissolution of kraft lignin in alkaline solutions. Int. J. Biol. Macromol. 2020, 148, 688–695. [Google Scholar] [CrossRef]
- Xie, N.K.; Zhang, Q.H.; Li, X.; Li, S.F.; Xu, C.J.; Li, L.T.; Zhu, L.P.; Gao, Y.; Yin, J.X.; Xie, L.; et al. Nanoparticle-enabled rapid detection of microbial threats to Sanxingdui ancient ivories. J. Cult. Herit. 2025, 73, 393–399. [Google Scholar] [CrossRef]
- Liu, T.T.; Han, X.N.; Yin, Y.F.; Xi, G.L.; Zhang, Z.G.; Sun, J.; Chen, G.; Zhang, L.T.; Han, L.Y. Multi-property prediction of waterlogged archaeological wood based on Wasserstein GAN-augmented tree models. J. Cult. Herit. 2025, 76, 86–98. [Google Scholar]
- Qin, Z.F.; Wu, M.R.; Han, X.N.; Han, L.Y. A new non-destructive method for flexural strength testing of waterlogged archaeological wood. Sci. Conserv. Archaeol. 2023, 35, 83–88. [Google Scholar]
- Wang, Y.; Fang, S.Q.; Chen, X.Q.; Chen, S. Application of photoluminescent materials in cultural relics protection. Rsc. Adv. 2025, 15, 37074–37089. [Google Scholar] [CrossRef]
- Janssens, K.; Dik, J.; Cotte, M.; Susini, J. Photon-Based Techniques for Nondestructive Subsurface Analysis of Painted Cultural Heritage Artifacts. Acc. Chem. Res. 2010, 43, 814–825. [Google Scholar] [CrossRef]
- Wang, Y.T.; Wang, X.X.; Chen, W.X.; Zhu, L.G.; Zhang, B.J. Environmental stimulant-responsive hydrogels based on polyethylene glycol-derived polymer for underwater bonding and extraction of fragile wooden relics: Synthesis, characterization, and preliminary application. Int. J. Adhes. Adhes. 2024, 131, 103651. [Google Scholar] [CrossRef]
- Li, S.; Zeng, Y.; Zhou, L.; Feng, N.; Li, C.; Sheng, L.; Li, Y.; Sun, J. Consolidation of waterlogged archaeological woods by reversibly cross-linked polymers. J. Archaeol. Sci. Rep. 2024, 57, 104675. [Google Scholar] [CrossRef]
- Meng, H.Q.; Wen, M.Y.; Shi, J.Y.; Park, H.; Zuo, H.W.; Ren, Y.N.; Lv, L.X.; Zhao, X.F.; Du, H.S.; Yang, X.J.; et al. Nanocomposite based ceramicizable functional coating with simultaneous flame retardancy and UV resistance for wood building material protection. Constr. Build. Mater. 2025, 492, 143016. [Google Scholar] [CrossRef]
- Wan, J.J.; Tian, M.L.; Wang, X.; Pan, M.W.; Pan, Z.C. Adaptive microgel films with enhancing cohesion, adhesion, and wettability for robust and reversible bonding in cultural relic restoration. J. Colloid Interf. Sci. 2025, 693, 137558. [Google Scholar] [CrossRef]
- Soares, I.; Bartoletti, A.; Viana, C.; Cardoso, I.P.; Casimiro, T.; Ferreira, J.L. Dense carbon dioxide technologies applied to the conservation of cultural heritage: A review. J. Supercrit. Fluids 2025, 229, 106821. [Google Scholar] [CrossRef]
- Liu, L.Q.; Zhang, L.; Zhang, B.J.; Hu, Y.N. Acomparative study of reinforcement materials for waterlogged woodrelics in laboratory. J. Cult. Herit. 2019, 36, 94–102. [Google Scholar] [CrossRef]
- Stelzner, I.; Stelzner, J.; Fischer, B.; Hamann, E.; Zuber, M.; Schuetz, P. A multi-technique and multiscale comparative study on the efficiency of conservation methods for the stabilisation of waterlogged archaeological pine. Sci. Rep. 2024, 14, 8681. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, Q.; Liu, T.; Zhang, B. The preservation damage of hydrophobic polymer coating materials in conservation of stone relics. Prog. Org. Coat. 2013, 76, 1127–1134. [Google Scholar] [CrossRef]
- Jiang, B.; Tsavalas, J.G.; Sundberg, D.C. Water whitening of polymer films: Mechanistic studies and comparisons between water and solvent borne films. Prog. Org. Coat. 2017, 105, 56–66. [Google Scholar] [CrossRef]
- Liu, M.; Mao, X.; Zhu, H.; Lin, A.; Wang, D. Water and corrosion resistance of epoxy–acrylic–amine waterborne coatings: Effects of resin molecular weight, polar group and hydrophobic segment. Corros. Sci. 2013, 75, 106–113. [Google Scholar] [CrossRef]
- Munekata, S. Fluoropolymers as coating material. Prog. Org. Coat. 1988, 16, 113–134. [Google Scholar] [CrossRef]
- Zhang, Z.; Ren, C.; Sun, Y.; Miao, Y.; Deng, L.; Wang, Z.; Cao, Y.; Zhang, W.; Huang, J. Construction of CNC@SiO2@PL Based Superhydrophobic Wood with Excellent Abrasion Resistance Based on Nanoindentation Analysis and Good UV Resistance. Polymers 2023, 15, 933. [Google Scholar] [CrossRef]
- Nazir, R.; Parida, D.; Borgstädt, J.; Lehner, S.; Jovic, M.; Rentsch, D.; Gaan, S. In-situ phosphine oxide physical networks: A facile strategy to achieve durable flame retardant and antimicrobial treatments of cellulose. Chem. Eng. J. 2021, 417, 128028. [Google Scholar] [CrossRef]
- Pączkowski, P.; Puszka, A.; Miazga-Karska, M.; Ginalska, G.; Gawdzik, B. Synthesis, characterization and testing of antimicrobial activity of composites of unsaturated polyester resins with wood flour and silver nanoparticles. Materials 2021, 14, 1122. [Google Scholar] [CrossRef]
- Chaumont, A.; Wipff, G. Ion aggregation in concentrated aqueous and methanol solutions of polyoxometallates Keggin anions: The effect of counterions investigated by molecular dynamics simulations. Phys. Chem. Chem. Phys. 2008, 10, 6940–6953. [Google Scholar] [CrossRef]
- Yang, S.L.; Wang, Z.W.; Liu, Z.; Wu, Y.Q. Enhancing durable fire safety and Anti-corrosion performance of wood through controlled In-Situ Self-Assembly synthesis of Ag-PW nanospheres. Chem. Eng. J. 2023, 475, 145227. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, A.N.; He, M.S.; Zheng, G.Q.; Zeng, F.R.; Wang, Y.Z.; Liu, B.W.; Zhao, H.B. Biomimetic Nanoporous Transparent Universal Fire-Resistant Coatings. ACS Appl. Mater. Interfaces 2024, 16, 19519−19528. [Google Scholar] [CrossRef]













Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, L.; Guo, Y.; Yang, C. Degradation and Protection of Wooden Cultural Relics: A Mini Review. Coatings 2025, 15, 1454. https://doi.org/10.3390/coatings15121454
Zhang L, Guo Y, Yang C. Degradation and Protection of Wooden Cultural Relics: A Mini Review. Coatings. 2025; 15(12):1454. https://doi.org/10.3390/coatings15121454
Chicago/Turabian StyleZhang, Lingling, Yingzhi Guo, and Chao Yang. 2025. "Degradation and Protection of Wooden Cultural Relics: A Mini Review" Coatings 15, no. 12: 1454. https://doi.org/10.3390/coatings15121454
APA StyleZhang, L., Guo, Y., & Yang, C. (2025). Degradation and Protection of Wooden Cultural Relics: A Mini Review. Coatings, 15(12), 1454. https://doi.org/10.3390/coatings15121454

