Corrosion Resistance and Plasma Surface Treatment on Titanium and Titanium Alloys: A Review
Abstract
1. Introduction
1.1. Corrosion Behavior of Titanium and Titanium Alloys
1.2. Plasma Generation and Its Influence on Surface Treatment
2. Plasma Surface Strengthening Method
2.1. Plasma Chemical Heat Treatment
2.2. Physical Vapor Deposition
2.2.1. Magnetron Sputtering
2.2.2. Cathodic Arc Ion Plating
2.2.3. Pulsed Laser Deposition
2.3. Plasma-Enhanced Chemical Vapor Deposition
2.4. Plasma Immersion Ion Implantation
2.5. Plasma Spraying
2.6. Duplex Treatment
3. Conclusions and Prospects
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
PN | Plasma nitriding |
PVD | Physical Vapor Deposition |
MS | Magnetron Sputtering |
AIP | Cathodic arc ion plating |
PLD | Pulsed Laser Deposition |
PAPLD | Plasma Assisted Pulsed Laser Deposition |
CVD | Chemical Vapor Deposition |
PECVD | Plasma-enhanced Chemical Vapor Deposition |
PIII | plasma immersion ion implantation |
PS | Plasma spraying |
PEO | Plasma electrolytic oxidation |
References
- Muñoz, J.M.J.; Tiburcio, C.G.; Ramirez, C.T.M.; Ramirez, M.G.C.; Zamora, M.A.B.; Hurtado, G.S.; Banda, M.L.; Lopez, F.E.; Mendoza, D.N.; Calderon, F.A. Corrosion of Anodized Titanium Alloys. Coatings 2024, 14, 809. [Google Scholar] [CrossRef]
- Li, Y.; Zhou, Z.; He, Y. Tribocorrosion and Surface Protection Technology of Titanium Alloys: A Review. Materials 2023, 17, 65. [Google Scholar] [CrossRef]
- Pang, J.; Blackwood, D.J. Corrosion of Titanium Alloys in High Temperature near Anaerobic Seawater. Corros. Sci. 2016, 105, 17–24. [Google Scholar] [CrossRef]
- Yang, X.; Lin, B.; Zhang, H.; Tang, J.; Zhou, T.; Wang, Y.; Zheng, H.; Kuang, Y. Influence of Stress on the Corrosion Behavior of Ti Alloys: A Review. J. Alloys Compd. 2024, 985, 173346. [Google Scholar] [CrossRef]
- Lei, Z.; Minghao, S.; Zhengwei, W.; Zhehao, Z.; Yongyong, H.; Jiwen, Y.; Jinpeng, L.; Jianxun, Q.; Yang, L. Comparison of Tribological Properties of Nitrided Ti-N Modified Layer and Deposited TiN Coatings on TA2 Pure Titanium. Tribol. Int. 2022, 174, 107712. [Google Scholar]
- Ciszak, C.; Popa, I.; Brossard, J.-M.; Monceau, D.; Chevalier, S. NaCl-Induced High-Temperature Corrosion of β21S Ti Alloy. Oxid. Met. 2017, 87, 729–740. [Google Scholar] [CrossRef]
- Zhao, X.; Liu, Y.; Jia, C.; Chang, H.; Zhang, W.; Bai, Y.; Li, S.; Zhang, L.C.; Yuan, W. Corrosion Behavior of Laser Powder Bed Fusion Additive Manufacturing Produced TiNi Alloy by Micro-Arc Oxidation. npj Mater. Degrad. 2024, 8, 13. [Google Scholar] [CrossRef]
- Shuo, W.; Yujie, N.; Hui, X.; Huayang, T.; Jiangming, L.; Bin, L. Study on the Galvanic Corrosion Behavior of Copper-Nickel/Titanium Alloys under Simulated Seawater Environment. J. Solid State Electrochem. 2023, 28, 2315–2329. [Google Scholar]
- Zhang, C.; Lu, Z.; Li, F.; Jia, L.; Yang, Z.; Chen, G.; Yu, Q.; Dong, R.; Cai, M. Corrosion and Lubrication Properties of a Halogen-Free Gemini Room-Temperature Ionic Liquid for Titanium Alloys. Tribol. Int. 2021, 156, 106850. [Google Scholar] [CrossRef]
- Liu, H.; Shi, L.; Liu, H.; Ren, L.; Yang, K. Corrosion behavior of laser powder bed fusion prepared antibacterial Cu-bearing titanium alloy. Mater. Lett. 2023, 331, 133496. [Google Scholar] [CrossRef]
- Fuyue, W.; Xiangjie, W.; Qiang, Y.; Jianzhong, C. Corrosion Behavior of TC4 Titanium Alloys in Al–Li Alloy Melt. Metals 2021, 11, 794. [Google Scholar] [CrossRef]
- Li, H.; Wang, B.; Yang, J.; Liu, X.; Zhang, J.; Ye, R. Corrosion Behavior of TC18 Titanium Alloy with Different Initial Microstructures in Salt Spray. J. Mater. Res. Technol. 2025, 35, 1619–1628. [Google Scholar] [CrossRef]
- Ji, H.; Xie, X.; Jiang, Z.; Wu, X. Wear and Corrosion of Titanium Alloy Spinal Implants In Vivo. Sci. Rep. 2024, 14, 16847. [Google Scholar] [CrossRef] [PubMed]
- Michael, A.; Pequegnat, A.; Wang, J.; Zhou, Y.N.; Khan, M.I. Corrosion Performance of Medical Grade NiTi after Laser Processing. Surf. Coat. Technol. 2017, 324, 478–485. [Google Scholar] [CrossRef]
- Rundora, N.R.; Merwe, J.W.V.d.; Klenam, D.E.P.; Bodunrin, M.O. Enhanced Corrosion Performance of Low-Cost Titanium Alloys in a Simulated Diabetic Environment. Mater. Corros. 2023, 74, 1486–1498. [Google Scholar] [CrossRef]
- Bodunrin, M.O.; Chown, L.H.; Merwe, J.W.v.d.; Alaneme, K.K.; Oganbule, C.; Klenam, D.E.P.; Mphasha, N.P. Corrosion Behavior of Titanium Alloys in Acidic and Saline Media. Corros. Rev. 2020, 38, 25–47. [Google Scholar] [CrossRef]
- Yu, W.X.; Dong, Z.S.; Qiang, L.; Qing, F.A.; Ling, L.J. Corrosion Behavior on Titanium Alloys as OCTG in Oil Fields. Mater. Sci. Forum 2021, 1032, 195–200. [Google Scholar] [CrossRef]
- Hua, Y.; Bai, Y.; Ye, Y.; Xue, Q.; Liu, H.; Chen, R.; Chen, K. Hot Corrosion Behavior of TC11 Titanium Alloy Treated by Laser Shock Processing. Appl. Surf. Sci. 2013, 283, 775–780. [Google Scholar] [CrossRef]
- Manikandan, C.B.; Selvakumar, N. Analyzing the Surface Roughness and Corrosion Resistance of YSZ-Coated Grade V Titanium Alloy by RF Sputtering. J. Mater. Eng. Perform. 2024, 30, 2380–2389. [Google Scholar] [CrossRef]
- Li, H.; Yu, H.; Chen, C.; Zhong, W. Effect of Graphene Oxide on Corrosion Resistance and Biological Activity of Micro Arc Oxidation Ceramic Layer on Titanium Alloy. Mater. Lett. 2022, 327, 133056. [Google Scholar] [CrossRef]
- Fuyang, G.; Zhijie, S.; Shengli, Y.; Peng, J.; Zhiqian, L. Stress Corrosion Characteristics of Electron Beam Welded Titanium Alloys Joints in NaCl Solution. Mater. Charact. 2022, 192, 112126. [Google Scholar] [CrossRef]
- Ye, Q.W.; Li, Y.; Zhang, M.Y.; Zhang, S.Z.; Bi, Y.J.; Gao, X.P.; He, Y.Y. Electrochemical Behavior of (Cr, W, Al, Ti, Si)N Multilayer Coating on Nitrided AISI 316L Steel in Natural Seawater. Ceram. Int. 2020, 46, 22404–22418. [Google Scholar] [CrossRef]
- Naghashzadeh, A.R.; Shafyei, A.; Sourani, F. Nanoindentation and Tribological Behavior of TiN-TiCN-TiAlN Multilayer Coatings on AISI D3 Tool Steel. J. Mater. Eng. Perform. 2022, 31, 4335–4342. [Google Scholar] [CrossRef]
- Shi, Y.; Joseph, S.; Saunders, E.A.; Sandala, R.S.; Walker, A.; Lindley, T.C.; Dye, D. AgCl-Induced Hot Salt Stress Corrosion Cracking in a Titanium Alloy. Corros. Sci. 2021, 187, 109497. [Google Scholar] [CrossRef]
- Li, Y.; Ye, Q.; Zhu, Y.; Zhang, L.; He, Y.; Zhang, S.; Xiu, J. Microstructure, Adhesion and Tribological Properties of CrN/CrTiAlSiN/WCrTiAlN Multilayer Coatings Deposited on Nitrocarburized AISI 4140 Steel. Surf. Coat. Technol. 2019, 362, 27–34. [Google Scholar] [CrossRef]
- Dong, F.; Li, X.; Zhang, L.; Ma, L.; Li, R. Cavitation Erosion Mechanism of Titanium Alloy Radiation Rods in Aluminum Melt. Ultrason. Sonochem. 2016, 31, 150–156. [Google Scholar] [CrossRef]
- Li, Y.; Bi, Y.; Zhang, M.; Zhang, S.; Gao, X.; Zhang, Z.; He, Y. Hollow Cathodic Plasma Source Nitriding of AISI 4140 Steel. Surf. Eng. 2020, 37, 351–359. [Google Scholar] [CrossRef]
- Małkiewicz, K.; Sztogryn, M.; Mikulewicz, M.; Wielgus, A.; Kamiński, J.; Wierzchoń, T. Comparative Assessment of the Corrosion Process of Orthodontic Archwires Made of Stainless Steel, Titanium–Molybdenum and Nickel–Titanium Alloys. Arch. Civ. Mech. Eng. 2018, 18, 941–947. [Google Scholar] [CrossRef]
- Wang, Z.W.; Li, Y.; Zhang, Z.H.; Zhang, S.Z.; Ren, P.; Qiu, J.X.; Wang, W.W.; Bi, Y.J.; He, Y.Y. Friction and Wear Behavior of Duplex-Treated AISI 316L Steels by Rapid Plasma Nitriding and (CrWAlTiSi)N Ceramic Coating. Results Phys. 2021, 24, 104132. [Google Scholar] [CrossRef]
- Zhao, H.; Xie, L.; Xin, C.; Li, N.; Zhao, B.; Li, L. Effect of Molybdenum Content on Corrosion Resistance and Corrosion Behavior of Ti-Mo Titanium Alloy in Hydrochloric Acid. Mater. Today Commun. 2023, 34, 105032. [Google Scholar] [CrossRef]
- Faraji, M.; Pezzato, L.; Yazdanpanah, A.; Nardi, G.; Esmailzadeh, M.; Calliari, I. Effect of Natural Inhibitors on the Corrosion Properties of Grade 2 Titanium Alloy. Materials 2024, 17, 5202. [Google Scholar] [CrossRef] [PubMed]
- Zhao, P.; Song, Y.; Dong, K.; Shan, D.; Han, E.H. Effect of Passive Film on the Galvanic Corrosion of Titanium Alloy Ti60 Coupled to Copper Alloy H62. Mater. Corros. 2019, 70, 1745–1754. [Google Scholar] [CrossRef]
- Benea, L.; Răvoiu, A.; Celis, J.-P. Anticorrosion Performance of the Electrochemically Grown Mixed Porous Oxide Films on Titanium Alloy in Biological Solution. ACS Biomater. Sci. Eng. 2019, 5, 5925–5934. [Google Scholar] [CrossRef] [PubMed]
- Omran, A.-N.; Ali, M.M.; Kh, M.M. Biocompatibility, Corrosion, and Wear Resistance of β Titanium Alloys for Biomedical Applications. Appl. Phys. A 2020, 126, 942. [Google Scholar] [CrossRef]
- Nichul, U.; Hiwarkar, V. Carbon Dot Complimentary Green Corrosion Inhibitor for Crystallographically Textured Beta C Titanium Alloy for Marine Application: A State of Art. J. Alloys Compd. 2023, 962, 171116. [Google Scholar] [CrossRef]
- Hailan, S.; Daoxin, L.; Xiaohua, Z.; Weidong, Z.; Zhen, L.; Mengyao, L.; Yuting, H. Effect of Plasma Electrolytic Oxidation on the Hot Salt Corrosion Fatigue Behavior of the TC17 Titanium Alloy. Mater. Corros. 2021, 73, 558–572. [Google Scholar] [CrossRef]
- Ruixia, Z.; Steven, M.; Nicholas, W.; Hongyu, G.; Hao, Z.; Xiaoning, H.; Haifeng, Q.; Zhencheng, R.; Xianfeng, Z.; Doll, G.L.; et al. Effects of Laser Shock Peening on the Corrosion Behavior and Biocompatibility of a Nickel-Titanium Alloy. J. Biomed. Mater. Res. Part B Appl. Biomater. 2019, 107, 1854–1863. [Google Scholar]
- Çomaklı, O.; Yazıcı, M.; Atmaca, A.; Yetim, T. The Electrochemical and Tribocorrosion Behavior of Hybrid Ceramic Film-Coated Ti Alloys. Ceram. Int. 2024, 50, 7988–7997. [Google Scholar] [CrossRef]
- Cao, H.; Dong, F.; Zhang, Q.; Wu, H. Chemical Corrosion Resistance Mechanism of Titanium Alloy Radiation Rods with Self-Protected Structure. Ultrason. Sonochem. 2025, 113, 107224. [Google Scholar] [CrossRef]
- Ionescu, F.; Reclaru, L.; Ardelean, L.C.; Blatter, A. Comparative Analysis of the Corrosion Resistance of Titanium Alloys Intended to Come into Direct or Prolonged Contact with Live Tissues. Materials 2019, 12, 2841. [Google Scholar] [CrossRef]
- Li, Z.; Fan, L.; Ma, L.; Duan, T.; Zhang, H.; Hou, J.; Sun, M. Perspective Review on Factors That Influence the Stress Corrosion of Ti Alloys for Deep-Sea Applications. J. Mater. Sci. Technol. 2025, 222, 228–249. [Google Scholar] [CrossRef]
- Yang, X.; Du, C.; Wan, H.; Liu, Z.; Li, X. Influence of Sulfides on the Passivation Behavior of Titanium Alloy TA2 in Simulated Seawater Environments. Appl. Surf. Sci. 2018, 458, 198–209. [Google Scholar] [CrossRef]
- Feifei, H.; Yuxiang, Z.; Meng, Y.; Lei, W.; Ying, J. Synergistic Effects of Hydrostatic Pressure and Dissolved Oxygen on the SCC Behavior of Hydrogenated Ti6Al4V Alloy in Deep-Sea Environment. Metals 2023, 13, 449. [Google Scholar]
- Cheng, K.-Y.; Nargaraj, R.; Bijukumar, D.; Mathew, M.T.; McNallan, M. Improvement of Tribocorrosion Behavior on Titanium Alloy by Carbide-Derived Carbon (CDC). Surf. Coat. Technol. 2020, 392, 125692. [Google Scholar] [CrossRef]
- Li, X.-X.; Chen, L.-Y.; Hu, W.-B.; Wan, S.; Song, L.-F.; Wang, Y.-P.; Liao, B.-K.; Guo, X.-P. Corrosion and Passive Behavior of SLM and Wrought TA15 Titanium Alloys in Hydrochloric Acid Solutions. J. Iron Steel Res. Int. 2024, 14, 1356–1370. [Google Scholar] [CrossRef]
- Ma, L.; Li, W.; Yang, Y.; Ma, Y.; Luo, K.; Jia, B.; Xu, Z.; Yu, Z. Corrosion Behavior of NiTi Alloys Fabricate by Selective Laser Melting Subjected to Femtosecond Laser Shock Peening. Coatings 2021, 11, 1078. [Google Scholar] [CrossRef]
- Ran, L.; Yingshuang, L.; Dalei, Z. Multiscale Characterization of Erosion of TA2 Titanium Alloy Welded Joints. Front. Mater. 2022, 9, 910319. [Google Scholar] [CrossRef]
- López, M.F.; Gutiérrez, A.; Jiménez, J.A. In Vitro Corrosion Behaviour of Titanium Alloys Without Vanadium. Electrochim. Acta 2002, 47, 1359–1364. [Google Scholar] [CrossRef]
- Królikowska, M.M. Influence of Silicon and Chromium on the Na2SO4-Induced Hot Corrosion Behavior of Titanium Alloys. Crystals 2023, 13, 948. [Google Scholar] [CrossRef]
- Li, A.; Wang, Q.; Chen, R.; Ding, X.; Su, Y.; Fu, H. Application of Alloying for Enhancing the Corrosion Resistance of Titanium Alloys: A Review. Mater. Today Commun. 2025, 42, 111111. [Google Scholar] [CrossRef]
- Huang, J.; Shen, L.; Yu, S.; Yu, X.; Liu, G.; Fan, D. Corrosion Characterization of in Situ Nitrogen Reinforced Titanium Alloy Arc Cladding Layer. J. Mater. Eng. Perform. 2023, 33, 10546–10559. [Google Scholar] [CrossRef]
- Hailan, S.; Daoxin, L.; Xiaohua, Z.; Tianyi, J.; Weidong, Z. Effect of Pre-Hot Salt Corrosion on Hot Salt Corrosion Fatigue Behavior of the TC11 titanium alloy at 500 °C. Int. J. Fatigue 2022, 163, 107055. [Google Scholar] [CrossRef]
- Li, H.; Ma, G.; Wang, Z. Corrosion Behavior of ZrO2-TiO2 Composite Coatings Produced on Titanium Alloy Via Plasma Electrolytic Oxidation. Surf. Coat. Technol. 2023, 469, 129814. [Google Scholar] [CrossRef]
- Cao, S.; Zhu, S.; Samuel Lim, C.V.; Zhou, X.; Chen, X.; Hinton, B.R.W.; Boyer, R.R.; Williams, J.C.; Wu, X. The Mechanism of Aqueous Stress-Corrosion Cracking of α + β Titanium Alloys. Corros. Sci. 2017, 125, 29–39. [Google Scholar] [CrossRef]
- Li, Z.; Wang, Y.; Zhang, J.; Guo, Y.; Wen, L. The Influence of Surface Nanocrystallization of TA2 Titanium Alloy on Its Corrosion Resistance. Coatings 2024, 14, 1114. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, X.; Lu, X.; Zhang, S.; Sun, Z.; Gao, F.; Li, J.; Lai, M. Influences of Microstructures and Macrozones on the Stress Corrosion Cracking Sensitivity of a Near Alpha Titanium Alloy. Corros. Sci. 2024, 232, 112015. [Google Scholar] [CrossRef]
- Lu, W.; Liu, Y.; Wu, X.; Liu, X.; Wang, J. Corrosion Behavior and Microstructural Effects on Passivation Film Mechanisms in Forged Ti-5Al-5Mo-5V-1Cr-1Fe Titanium Alloy Under Laser Surface Remelting. Corros. Sci. 2024, 241, 112542. [Google Scholar] [CrossRef]
- Costa, T.N.Q.; Dotta, T.C.; Galo, R.; Soares, M.E.d.C.; Pedrazzi, V. Effect of Tribocorrosion on Surface-Treated Titanium Alloy Implants: A Systematic Review with Meta-Analysis. J. Mech. Behav. Biomed. Mater. 2023, 145, 106008. [Google Scholar] [CrossRef]
- Escobar Claros, C.A.; Contri Campanelli, L.; Moreira Jorge, A.; Leprêtre, J.-C.; Bolfarini, C.; Roche, V. Corrosion Behaviour of Biomedical β-Titanium Alloys with the Surface-Modified by Chemical Etching and Electrochemical Methods. Corros. Sci. 2021, 188, 109544. [Google Scholar] [CrossRef]
- Mahadule, D.; Khatirkar, R.K.; Gupta, S.K.; Gupta, A.; Dandekar, T.R. Microstructure Evolution and Corrosion Behaviour of a High Mo Containing α + β Titanium Alloy for Biomedical Applications. J. Alloys Compd. 2022, 912, 165240. [Google Scholar] [CrossRef]
- Yang, X.; Hutchinson, C.R. Corrosion-Wear of β-Ti alloy TMZF (Ti-12Mo-6Zr-2Fe) in Simulated Body Fluid. Acta Biomater. 2016, 42, 429–439. [Google Scholar] [CrossRef]
- Angela, X.; Mostafa, A.; Remya, A.R.; Apurwa, S.; Barão, V.A.; Sukotjo, C.; Mathew, M.T. Peri-Implantitis in Relation to Titanium Corrosion: Current Status and Future Perspectives. J. Bio-Tribo-Corros. 2022, 8, 46. [Google Scholar]
- Burkov, A.A.; Chigrin, P.G.; Dvornik, M.I. Electrospark CuTi Coatings on Titanium Alloy Ti6Al4V: Corrosion and Wear Properties. Surf. Coat. Technol. 2023, 469, 129796. [Google Scholar] [CrossRef]
- Diomidis, N.; Mischler, S.; More, N.S.; Roy, M.; Paul, S.N. Fretting-Corrosion Behavior of β Titanium Alloys in Simulated Synovial Fluid. Wear 2011, 271, 1093–1102. [Google Scholar] [CrossRef]
- Noel, S.; Long, V.; Otgonsuren, L.; Sara, K. Computational Design of Corrosion-Resistant and Wear-Resistant Titanium Alloys for Orthopedic Implants. Mater. Today Commun. 2022, 33, 104465. [Google Scholar]
- Xiaofeng, Z.; Hui, L.; Susu, L.; Abdulrahman, A.-A.; Huan, L.; Yang, H.; Ling, R.; Hui, Y.; Ke, Y. Corrosion Behavior of Laser Powder Bed Fusion Manufactured Cu-Bearing Titanium Alloy in Artificial Saliva. Mater. Lett. 2023, 349, 134817. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, B.; Su, B.; Luo, L.; Wang, L.; Su, Y.; Xu, Y.; Huang, H.; Guo, J.; Fu, H. Investigation on Corrosion Behavior of Zr-Bearing TA10-Based Titanium Alloys. Corros. Sci. 2023, 221, 111354. [Google Scholar] [CrossRef]
- He, S.; Zhu, J.; Jing, Y.; Long, S.; Tang, L.; Cheng, L.; Shi, Z. Effect of 3D-Printed Porous Titanium Alloy Pore Structure on Bone Regeneration: A Review. Coatings 2024, 14, 253. [Google Scholar] [CrossRef]
- Sari, M.; Kristianto, N.A.; Chotimah; Ana, I.D.; Yusuf, Y. Carbonated Hydroxyapatite-Based Honeycomb Scaffold Coatings on a Titanium Alloy for Bone Implant Application—Physicochemical and Mechanical Properties Analysis. Coatings 2021, 11, 941. [Google Scholar] [CrossRef]
- Atapour, M.; Pilchak, A.L.; Frankel, G.S.; Williams, J.C. Corrosion Behavior of β Titanium Alloys for Biomedical Applications. Mater. Sci. Eng. C 2011, 31, 885–891. [Google Scholar] [CrossRef]
- Yan, Y.; Zhang, Y.; Wang, Q.; Du, H.; Qiao, L. Effect of Povidone–Iodine Deposition on Tribocorrosion and Antibacterial Properties of Titanium Alloy. Appl. Surf. Sci. 2016, 363, 432–438. [Google Scholar] [CrossRef]
- Jingtao, Z.; Liping, N.; Jingwen, Z.; Yinglong, L. Investigation on Ultrasonic Cavitation Erosion of Aluminum–Titanium Alloys in Sodium Chloride Solution. Crystals 2021, 11, 1299. [Google Scholar] [CrossRef]
- Qiao, Q.; Cristino, V.A.M.; Tam, L.M.; Kwok, C.T. Laser Surface Alloying of Titanium Alloy with Silver: Microstructure, Hardness and Corrosion Property. Surf. Coat. Technol. 2023, 458, 129357. [Google Scholar] [CrossRef]
- Hrir, H.; Layachi, O.A.; Boudouma, A.; Bouari, A.E.; Sidimou, A.A.; Marrakchi, M.E.; Khoumri, E. Electrochemical Corrosion Behavior of α-Titanium Alloys in Simulated Biological Environments (Comparative Study). RSC Adv. 2024, 14, 38110–38119. [Google Scholar] [CrossRef]
- Jáquez-Muñoz, J.M.; Gaona-Tiburcio, C.; Cabral-Miramontes, J.; Nieves-Mendoza, D.; Maldonado-Bandala, E.; Olguín-Coca, J.; López-Léon, L.D.; Flores-De los Rios, J.P.; Almeraya-Calderón, F. Electrochemical Noise Analysis of the Corrosion of Titanium Alloys in NaCl and H2SO4 Solutions. Metals 2021, 11, 105. [Google Scholar]
- Koike, M.; Mitchell, R.J.; Horie, T.; Hummel, S.K.; Okabe, T. Biofilm Accumulation on Additive Manufactured Ti-6Al-4V Alloy Surfaces. J. Oral Sci. 2022, 64, 139–144. [Google Scholar] [CrossRef]
- Ritika, M.; Yingmei, H.; Nijhuis, C.A.; Nikolaos, S.; Castro Neto, A.H.; Vinicius, R. Graphene Nanocoating Provides Superb Long-Lasting Corrosion Protection to Titanium Alloy. Dent. Mater. Off. Publ. Acad. Dent. Mater. 2021, 37, 1553–1560. [Google Scholar]
- Il, S.D.; Bong, L.J. Localized Corrosion and Repassivation Behaviors of Additively Manufactured Titanium Alloys in Simulated Biomedical Solutions. npj Mater. Degrad. 2023, 7, 44. [Google Scholar] [CrossRef]
- Yuan, J.; Zhang, H.; Sun, D.; Zhou, S.; Gao, Y.; Gao, K.; Fan, L. Markedly Improved Tensile Property and Corrosion Resistance of ZTC4 Titanium Alloy by Hot Pressing. Mater. Lett. 2024, 357, 135814. [Google Scholar] [CrossRef]
- Zhou, Y.; Jing, Z.; Jun, H. Study on Surface Properties of Nanosecond Laser Textured Plasma Nitrided Titanium Alloy. Mater. Today Commun. 2022, 31, 103746. [Google Scholar] [CrossRef]
- Mabilleau, G.; Bourdon, S.; Joly-Guillou, M.L.; Filmon, R.; Baslé, M.F.; Chappard, D. Influence of Fluoride, Hydrogen Peroxide and Lactic Acid on the Corrosion Resistance of Commercially Pure Titanium. Acta Biomater. 2006, 2, 121–129. [Google Scholar] [CrossRef]
- Wu, H.; Zhang, X.; He, X.; Li, M.; Huang, X.; Hang, R.; Tang, B. Wear and Corrosion Resistance of Anti-Bacterial Ti–Cu–N Coatings on Titanium Implants. Appl. Surf. Sci. 2014, 317, 614–621. [Google Scholar] [CrossRef]
- Ferreira, D.F.; Almeida, S.M.A.; Soares, R.B.; Juliani, L.; Bracarense, A.Q.; Lins, V.d.F.C.; Junqueira, R.M.R. Synergism Between Mechanical Wear and Corrosion on Tribocorrosion of a Titanium Alloy in a Ringer Solution. J. Mater. Res. Technol. 2019, 8, 1593–1600. [Google Scholar] [CrossRef]
- Corne, P.; March, P.D.; Cleymand, F.; Geringer, J. Fretting-Corrosion Behavior on Dental Implant Connection in Human Saliva. J. Mech. Behav. Biomed. Mater. 2019, 94, 86–92. [Google Scholar] [CrossRef] [PubMed]
- Pound Bruce, G. Galvanic Corrosion of Nitinol Under Deaerated and Aerated Conditions. J. Biomed. Mater. Res. Part B Appl. Biomater. 2016, 104, 1322. [Google Scholar]
- Min, K.S. Oral Galvanism Related to Dental Implants. Maxillofac. Plast. Reconstr. Surg. 2023, 45, 36. [Google Scholar] [CrossRef] [PubMed]
- Neupane, S.; Losada-Pérez, P.; Tiringer, U.; Taheri, P.; Desta, D.; Xie, C.; Crespo, D.; Mol, A.; Milošev, I.; Kokalj, A.; et al. Study of Mercaptobenzimidazoles as Inhibitors for Copper Corrosion: Down to the Molecular Scale. J. Electrochem. Soc. 2021, 168, 1504. [Google Scholar] [CrossRef]
- Wang, C.-M.; Cao, S.; Yang, F.-X.; Ma, Y.-J.; Su, H.; Fu, A.-Q.; Zhang, S.-Z.; Yang, R.; Hu, Q.-M. Insights into the Formation of Titanium Hydrides from First Principles Calculations. Acta Mater. 2024, 275, 119921. [Google Scholar] [CrossRef]
- Xu, D.; Meng, Z.; Guo, H.; Bao, Q.; Wang, M.; Wang, H.; Li, X.; Zhang, J.; Zhao, Z.; Wang, Q.; et al. Molecular Dynamics Simulation of the Atomic Mechanisms of Deformation and Phase Transformation in Titanium Alloys. Metall. Mater. Trans. A 2025, 18, 1971–1982. [Google Scholar] [CrossRef]
- Kranthi Kiran, A.S.; Kizhakeyil, A.; Ramalingam, R.; Verma, N.K.; Lakshminarayanan, R.; Kumar, T.S.S.; Doble, M.; Ramakrishna, S. Drug Loaded Electrospun Polymer/Ceramic Composite Nanofibrous Coatings on Titanium for Implant Related Infections. Ceram. Int. 2019, 45, 18710–18720. [Google Scholar] [CrossRef]
- Rikhari, B.; Saranya, K.; Kalaiyarasan, M.; Rahaman, M.; Periyasami, G.; Pandiaraj, S.; Thiruvengadam, M.; Pugalmani, S.; Rajakumar, G. Bioactive Conductive Polymer-Coated Titanium to Support Osseointegration. Biomass Convers. Biorefinery 2024, 14, 10699–10712. [Google Scholar] [CrossRef]
- Gevrek, T.N.; Yu, K.; Kizhakkedathu, J.N.; Sanyal, A. Thiol-Reactive Polymers for Titanium Interfaces: Fabrication of Antimicrobial Coatings. ACS Appl. Polym. Mater. 2019, 1, 1308–1316. [Google Scholar] [CrossRef]
- Wang, B.; Wei, S.; Huang, W.; Wang, Y.; Liang, Y.; Li, J.; Shi, R.; Guo, L.; Xue, J. Preparation, Anticorrosion Mechanism, and Application of Nano-Ti Polymer-Containing Coating. Eur. Polym. J. 2023, 195, 112200. [Google Scholar] [CrossRef]
- Hussain, Z.; Lin, Z.; Pan, H.; Huang, Y.; Tang, F.; Jiang, L. Synergizing Empirical and AI Methods to Examine Nano-Silica’s Microscale Contribution to Epoxy Coating Corrosion Resistance. Ceram. Int. 2024, 50, 47172–47191. [Google Scholar] [CrossRef]
- Meng, X.; Hou, L.; Wang, Z.; Liu, W.; Hao, H.; Lv, X.; An, J. Waterborne Acrylic Anti-Corrosion Coatings with Different Proportions of Yttrium Oxide/Titanium Dioxide Fillers. Prog. Org. Coat. 2025, 208, 109423. [Google Scholar] [CrossRef]
- Kamat, A.M.; Copley, S.M.; Segall, A.E.; Todd, J.A. Laser-Sustained Plasma (LSP) Nitriding of Titanium: A Review. Coatings 2019, 9, 283. [Google Scholar] [CrossRef]
- Wu, W.; Liu, J.; Zhang, Y.; Wang, X. Electrochemical Characteristics of Iridium Coating by Double Glow Plasma Discharge Process on Titanium Alloy Substrates. Surf. Eng. 2019, 35, 954–961. [Google Scholar] [CrossRef]
- Li, Y.; Liu, Z.; Luo, J.; Zhang, S.; Qiu, J.; He, Y. Microstructure, Mechanical and Adhesive Properties of CrN/CrTiAlSiN/WCrTiAlN Multilayer Coatings Deposited on Nitrided AISI 4140 steel. Mater. Charact. 2018, 147, 353–364. [Google Scholar] [CrossRef]
- Li, Y.; Zhou, Z.; He, Y. Solid Lubrication System and Its Plasma Surface Engineering: A Review. Lubricants 2023, 11, 473. [Google Scholar] [CrossRef]
- Dufour, T. From Basics to Frontiers: A Comprehensive Review of Plasma-Modified and Plasma-Synthesized Polymer Films. Polymers 2023, 15, 3607. [Google Scholar] [CrossRef]
- Anders, A. Plasma and Ion Sources in Large Area Coating: A Review. Surf. Coat. Technol. 2005, 200, 1893–1906. [Google Scholar] [CrossRef]
- Lu, S.; Sun, X.; Zhang, B.; Wu, J. Review of Cathode Plasma Electrolysis Treatment: Progress, Applications, and Advancements in Metal Coating Preparation. Materials 2024, 17, 3929. [Google Scholar] [CrossRef]
- Grigoriev, S.; Sotova, C.; Vereschaka, A.; Uglov, V.; Cherenda, N. Modifying Coatings for Medical Implants Made of Titanium Alloys. Metals 2023, 13, 718. [Google Scholar] [CrossRef]
- Loskutova, T.; Scheffler, M.; Pavlenko, I.; Zidek, K.; Pohrebova, I.; Kharchenko, N.; Smokovych, I.; Dudka, O.; Palyukh, V.; Ivanov, V.; et al. Corrosion Resistance of Coatings Based on Chromium and Aluminum of Titanium Alloy Ti-6Al-4V. Materials 2024, 17, 3880. [Google Scholar] [CrossRef] [PubMed]
- Bobzin, K.; Öte, M.; Schein, J.; Zimmermann, S.; Möhwald, K.; Lummer, C. Modelling the Plasma Jet in Multi-Arc Plasma Spraying. J. Therm. Spray Technol. 2016, 25, 1111–1126. [Google Scholar] [CrossRef]
- Shepelin, N.A.; Tehrani, Z.P.; Ohannessian, N.; Schneider, C.W.; Pergolesi, D.; Lippert, T. A Practical Guide to Pulsed Laser Deposition. Chem. Soc. Rev. 2023, 52, 2294. [Google Scholar] [CrossRef]
- Kilicaslan, A.; Zabeida, O.; Bousser, E.; Schmitt, T.; Klemberg-Sapieha, J.E.; Martinu, L. Hard Titanium Nitride Coating Deposition Inside Narrow Tubes Using Pulsed DC PECVD Processes. Surf. Coat. Technol. 2019, 377, 124894. [Google Scholar] [CrossRef]
- Pillaca, E.J.D.M.; Ramírez, M.A.; Gutierrez Bernal, J.M.; Lugo, D.C.; Trava-Airoldi, V.J. DLC Deposition Inside of a Long Tube by Using the Pulsed-DC PECVD Process. Surf. Coat. Technol. 2019, 359, 55–61. [Google Scholar] [CrossRef]
- Afzali, P.; Ghomashchi, R.; Oskouei, R.H. On the Corrosion Behaviour of Low Modulus Titanium Alloys for Medical Implant Applications: A Review. Metals 2019, 9, 878. [Google Scholar] [CrossRef]
- Gurappa, I. Protection of titanium alloy components against high temperature corrosion. Mater. Sci. Eng. A 2003, 356, 372–380. [Google Scholar] [CrossRef]
- Li, Z.; Liu, P.; Zou, X.; Zhang, Z.; Liu, G.; Wang, Z.; Zhou, E.; Fan, Y.; Xu, D.; Wang, F. Riboflavin Facilitates Microbial Corrosion of NiTi Alloy by Human Intestinal Microbiota. Corros. Sci. 2024, 236, 112234. [Google Scholar] [CrossRef]
- Yilong, Y.; Ya, Z.; Xuhe, L.; Haoming, Z. Study on Chemical Corrosion Properties of Titanium Alloy in 2A14 Aluminum Melt. Mater. Res. Express 2023, 10, 106512. [Google Scholar] [CrossRef]
- Lian, Z.W.; Xin, S.W.; Guo, P.; Wang, H.; Qiang, F.; Tu, X.Y.; Fang, H.L. Synergistic Effect of Cr and Fe Elements on Stress Corrosion Fracture Toughness of Titanium Alloy. Met. Mater. Int. 2024, 10, 1087–1095. [Google Scholar] [CrossRef]
- Dong, K.; Song, Y.; Bian, G.; Cai, Y.; Han, E.-H. Tribocorrosion Behavior of TC18 Titanium Alloy: A Discussion About the Interaction Between Galvanic Corrosion and Wear. Tribol. Int. 2024, 192, 109292. [Google Scholar] [CrossRef]
- Fekry Amany, M.; Filippova Inna, V.; Medany Shymaa, S.; Abdel Gawad Soha, A.; Filippov Lev, O. Use of a Natural Rock Material as a Precursor to Inhibit Corrosion of Ti Alloy in an Aggressive Phosphoric Acid Medium. Sci. Rep. 2024, 14, 9807. [Google Scholar] [CrossRef]
- Grabarczyk, J.; Batory, D.; Kaczorowski, W.; Pązik, B.; Januszewicz, B.; Burnat, B.; Czerniak-Reczulska, M.; Makówka, M.; Niedzielski, P. Comparison of Different Thermo-Chemical Treatments Methods of Ti-6Al-4V Alloy in Terms of Tribological and Corrosion Properties. Materials 2020, 13, 5192. [Google Scholar] [CrossRef] [PubMed]
- Aires, M.M.; Naeem, M.; Melo-Silveira, R.F.; Macedo, A.J.; de Souza, I.V.; Rocha, H.A.O.; de Sousa, R.R.M.; Júnior, C.A. A Comparative Investigation of Plasma Nitriding and Oxy-Nitriding Treatment on Cells and Bacterial Interaction on Titanium Surfaces. Mater. Chem. Phys. 2025, 339, 130716. [Google Scholar] [CrossRef]
- Kovács, D.; Quintana, I.; Dobránszky, J. Effects of Different Variants of Plasma Nitriding on the Properties of the Nitrided Layer. J. Mater. Eng. Perform. 2019, 28, 5485–5493. [Google Scholar] [CrossRef]
- Weicheng, K.; Zhou, Y.; Jun, H. Characterization and Tribological Performance of Titanium Nitrides in Situ Grown on Ti6Al4V Alloy by Glow Discharge Plasma Nitriding. J. Wuhan Univ. Technol.-Mater. Sci. Ed. 2022, 37, 76–84. [Google Scholar]
- Liu, G.; Wang, E.; Gao, W.; Huang, Z.; Wei, B.; Yang, Y.; Yan, M.; Fu, Y.-D. Modification Mechanism of Ti-6Al-4V Alloy with Pre-Coated Ti-Cu-Al Multilayer Film Treated by Ion Nitriding: Experiments and First-Principles Calculations. Surf. Interfaces 2023, 40, 103004. [Google Scholar] [CrossRef]
- Ohtsu, N.; Takeda, S.; Endo, R.; Miura, K.; Kiba, T. Comparison of Open-Atmosphere Nitriding on Various Metal Surfaces Triggered by a Focused Pulsed Laser Irradiation. Surf. Coat. Technol. 2023, 454, 129190. [Google Scholar] [CrossRef]
- Fernandes, F.D.; de Oliveira Velloso, V.M.; Ferreira, B.; Landers, R.; Martins, G.V.; Barboza, M.J.R. Enhanced Tribological Behavior of Titanium Grade 2 Through Gas Nitriding: Process, Characterization and Performance Evaluation. J. Mater. Eng. Perform. 2024, 14, 17073–17092. [Google Scholar] [CrossRef]
- Sowińska, A.; Czarnowska, E.; Tarnowski, M.; Witkowska, J.; Wierzchoń, T. Structure and Hemocompatibility of Nanocrystalline Titanium Nitride Produced Under Glow-Discharge Conditions. Appl. Surf. Sci. 2018, 436, 382–390. [Google Scholar] [CrossRef]
- Coelho, L.; Batista, A.C.; Nobre, J.P.; Marques, M.J. Rolling and Rolling-Sliding Contact Fatigue Failure Mechanisms in 32 CrMoV 13 Nitrided Steel—An Experimental Study. Appl. Sci. 2021, 11, 10499. [Google Scholar] [CrossRef]
- Adachi, S.; Yamaguchi, T.; Tanaka, K.; Nishimura, T.; Ueda, N. Effects of Solid-Solution Carbon and Eutectic Carbides in AISI 316L Steel-Based Tungsten Carbide Composites on Plasma Carburizing and Nitriding. Metals 2023, 13, 1350. [Google Scholar] [CrossRef]
- Heo, H.-S.; Kim, S.-J. Electrochemical Properties and Interfacial Contact Resistance of Plasma Ion Nitrided Titanium as PEMFC Bipolar Plate. Jpn. J. Appl. Phys. 2023, 62, 1018. [Google Scholar] [CrossRef]
- Rossi, S.; Fedrizzi, L.; Bacci, T.; Pradelli, G. Corrosion Behaviour of Glow Discharge Nitrided Titanium Alloys. Corros. Sci. 2003, 45, 511–529. [Google Scholar] [CrossRef]
- Li, Y.; Wang, Z.; Wang, L. Surface Properties of Nitrided Layer on AISI 316L Austenitic Stainless Steel Produced by High Temperature Plasma Nitriding in Short Time. Appl. Surf. Sci. 2014, 298, 243–250. [Google Scholar] [CrossRef]
- Li, Y.; He, Y.; Xiu, J.; Wang, W.; Zhu, Y.; Hu, B. Wear and Corrosion Properties of AISI 420 Martensitic Stainless Steel Treated by Active Screen Plasma Nitriding. Surf. Coat. Technol. 2017, 329, 184–192. [Google Scholar] [CrossRef]
- Sun, F.; Cheng, W.; Zhao, B.; Lin, Z. Fatigue Properties of Plasma Nitriding for Dental Implant Application. J. Prosthet. Dent. 2024, 131, e321–e329. [Google Scholar] [CrossRef]
- Sun, J.; Yao, Q.T.; Zhang, Y.H.; Du, X.D.; Wu, Y.C.; Tong, W.P. Simultaneously Improving Surface Mechanical Properties and in Vitro Biocompatibility of Pure Titanium Via Surface Mechanical Attrition Treatment Combined with Low-Temperature Plasma Nitriding. Surf. Coat. Technol. 2017, 309, 382–389. [Google Scholar] [CrossRef]
- Liu, J.; Wang, Z.; Ye, Z.; Jin, W.; Chen, Z.; Hu, Y.; Wu, J.; Chen, D.; Bai, B.; Wang, X.; et al. Improved Dry Sliding Wear Behavior of TA1 Titanium by Low-Temperature Plasma Nitriding by CCPN Method. Vacuum 2024, 221, 112945. [Google Scholar] [CrossRef]
- Miao, B.; Chai, Y.; Wei, K.; Hu, J. A Novel Duplex Plasma Treatment Combining Plasma Nitrocarburizing and Plasma Nitriding. Vacuum 2016, 133, 54–57. [Google Scholar] [CrossRef]
- Toboła, D.; Morgiel, J.; Maj, Ł. TEM Analysis of Surface Layer of Ti–6Al–4V ELI Alloy After Slide Burnishing and Low-Temperature Gas Nitriding. Appl. Surf. Sci. 2020, 515, 145942. [Google Scholar] [CrossRef]
- Zhang, L.; Shao, M.; Zhang, Z.; Yi, X.; Yan, J.; Zhou, Z.; Fang, D.; He, Y.; Li, Y. Corrosion Behavior of Nitrided Layer of Ti6Al4V Titanium Alloy by Hollow Cathodic Plasma Source Nitriding. Materials 2023, 16, 2961. [Google Scholar] [CrossRef]
- Borowski, T. Enhancing the Corrosion Resistance of Austenitic Steel Using Active Screen Plasma Nitriding and Nitrocarburising. Materials 2021, 14, 3320. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhehao, Z.; Yongjie, B.; Minyi, Z.; Yang, L.; Fushuai, Z.; Shangzhou, Z.; Yongyong, H. Properties of Stainless-Steel Surface After Hollow Cathode Assisted Plasma Nitriding. Mater. Res. Express 2020, 7, 116524. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, Z.; Shao, M.; He, Y.; Li, Y.; Li, Y.; Chen, G.; Luo, J. Nitrogen–Carbon-Induced Spinodal Structure in Plasma Nitrocarburized 38CrMoAl with Hollow Cathode Discharging. J. Mater. Sci. 2024, 59, 13305–13322. [Google Scholar] [CrossRef]
- Feng, Z.; Liu, Z.; Meng, D.; Li, Y.; Jiang, X.; Li, J.; Wang, J.; Jiao, L.; Zhao, B.; Wang, L.; et al. Microstructure Evolution and Vacuum Tribological Properties of Surface Nitriding Layer on a TiZrAlV Alloy Fabricated by Laser Nitriding. J. Mater. Res. Technol. 2023, 24, 928–939. [Google Scholar] [CrossRef]
- Shen, H.; Wang, L. Formation, Tribological and Corrosion Properties of Thicker Ti-N Layer Produced by Plasma Nitriding of Titanium in a N2-NH3 Mixture Gas. Surf. Coat. Technol. 2020, 393, 125846. [Google Scholar] [CrossRef]
- Li, Y.; Zhou, Z.; Yi, X.; Yan, J.; Xiu, J.; Fang, D.; Shao, M.; Ren, P.; He, Y.; Qiu, J. Improved Seawater Corrosion Resistance of Electron Beam Melting Ti6Al4V Titanium Alloy by Plasma Nitriding. Vacuum 2023, 216, 112463. [Google Scholar] [CrossRef]
- Mohan, L.; Anandan, C. Effect of Gas Composition on Corrosion Behavior and Growth of Apatite on Plasma Nitrided Titanium Alloy Beta-21S. Appl. Surf. Sci. 2013, 268, 288–296. [Google Scholar] [CrossRef]
- Manhabosco, T.M.; Tamborim, S.M.; dos Santos, C.B.; Müller, I.L. Tribological, Electrochemical and Tribo-Electrochemical Characterization of Bare and Nitrided Ti6Al4V in Simulated Body Fluid Solution. Corros. Sci. 2011, 53, 1786–1793. [Google Scholar] [CrossRef]
- Tarnowski, M.; Borowski, T.; Skrzypek, S.; Kulikowski, K.; Wierzchoń, T. Shaping the Structure and Properties of Titanium and Ti6Al7Nb Titanium Alloy in low-Temperature Plasma Nitriding Processes. J. Alloys Compd. 2021, 864, 158896. [Google Scholar] [CrossRef]
- Kamiński, J.; Sitek, R.; Adamczyk-Cieślak, B.; Kulikowski, K. Impact of Glow-Discharge Nitriding Technology on the Properties of 3D-Printed Grade 2 Titanium Alloy. Materials 2024, 17, 4592. [Google Scholar] [CrossRef]
- Shen, H.; Wang, L. Characterization and Electrochemical Performance of Plasma-Nitrided Titanium Alloy for Bipolar Plates. Eng. Res. Express 2024, 6, 5533. [Google Scholar] [CrossRef]
- Shen, H.; Wang, L. Corrosion Resistance and Electrical Conductivity of Plasma Nitrided Titanium. Int. J. Hydrogen Energy 2021, 46, 11084–11091. [Google Scholar] [CrossRef]
- Hussein, M.A.; Yilbas, B.; Kumar, A.M.; Drew, R.; Al-Aqeeli, N. Influence of Laser Nitriding on the Surface and Corrosion Properties of Ti-20Nb-13Zr Alloy in Artificial Saliva for Dental Applications. J. Mater. Eng. Perform. 2018, 27, 4655–4664. [Google Scholar] [CrossRef]
- El-Hossary, F.M.; Negm, N.Z.; Abd El-Rahman, A.M.; Raaif, M.; Seleem, A.A.; Abd El-Moula, A.A. Tribo-Mechanical and Electrochemical Properties of Plasma Nitriding Titanium. Surf. Coat. Technol. 2015, 276, 658–667. [Google Scholar] [CrossRef]
- Zhang, C.; Wen, K.; Gao, Y. Columnar and Nanocrystalline Combined Microstructure of the Nitrided Layer by Active Screen Plasma Nitriding on Surface-Nanocrystalline Titanium Alloy. Appl. Surf. Sci. 2023, 617, 156614. [Google Scholar] [CrossRef]
- Sun, W.; Zhao, Z.; Wang, J.; Si, C. The Effects of Plasma Nitriding on the Microstructure, Friction Wear, and Electrochemical Properties of TC6 Titanium Alloy. J. Mater. Sci. 2025, 60, 3974–3987. [Google Scholar] [CrossRef]
- Yang, L.; Zhengwei, W.; Minghao, S.; Zhehao, Z.; Chengxu, W.; Jiwen, Y.; Jinpeng, L.; Lei, Z.; Bing, X.; Yongyong, H.; et al. Characterization and Electrochemical Behavior of a Multilayer-Structured Ti–N Layer Produced by Plasma Nitriding of Electron Beam Melting TC4 Alloy in Hank’s Solution. Vacuum 2023, 208, 111737. [Google Scholar]
- Xing, Y.-Z.; Wang, G.; Zhang, Y.; Chen, Y.-N.; Dargusch, M. Development in Plasma Surface Diffusion Techniques of Ti-6Al-4V Alloy: A Review. Int. J. Adv. Manuf. Technol. 2017, 92, 1901–1912. [Google Scholar] [CrossRef]
- Stuart, B.W.; Stan, G.E. Physical Vapour Deposited Biomedical Coatings. Coatings 2021, 11, 619. [Google Scholar] [CrossRef]
- Rajput, S.S.; Gangopadhyay, S.; Yaqub, T.B.; Cavaleiro, A.; Fernandes, F. Room and High Temperature Tribological Performance of CrAlN(Ag) Coatings: The Influence of Ag Additions. Surf. Coat. Technol. 2022, 450, 129011. [Google Scholar] [CrossRef]
- Liu, Q.; Li, Y.X.; Qiu, J.; Chen, M.; Wang, J.; Hu, J. Antibacterial Property and Bioadaptability of Ti6Al4V Alloy with a Silvered Gradient Nanostructured Surface Layer. Rare Met. 2021, 41, 621–629. [Google Scholar] [CrossRef]
- Zhang, F.; Ma, H.; Zhao, R.; Yu, G.; Chen, J.; Yin, F. Microstructure, Mechanical and Corrosion Performance of Magnetron Sputtered (Al0.5CoCrFeNi)Nx High-Entropy Alloy Nitride Films. J. Alloys Compd. 2023, 968, 172158. [Google Scholar] [CrossRef]
- Shakib, S.E.; Babakhani, A.; Kashefi Torbati, M. Nanomechanical Assessment of Tribological Behavior of TiN/TiCN Multi-Layer Hard Coatings Deposited by Physical Vapor Deposition. J. Mater. Res. Technol. 2023, 25, 1344–1354. [Google Scholar] [CrossRef]
- Vengesa, Y.; Fattah-alhosseini, A.; Elmkhah, H.; Imantalab, O.; Keshavarz, M.K. Investigation of Corrosion and Tribological Characteristics of Annealed CrN/CrAlN Coatings Deposited by CAE-PVD. Ceram. Int. 2023, 49, 3016–3029. [Google Scholar] [CrossRef]
- Major, L.; Krawiec, H.; Lackner, J.M.; Dyner, M.; Grysakowski, B.; Major, B. Nanoscale Characterization of Corrosion Mechanisms in Advanced Zr/ZrxN and Zr/ZrxN+a-C:H Nano-Multilayer Coatings for Medical Tools. Mater. Charact. 2020, 168, 110565. [Google Scholar] [CrossRef]
- Garbacz, H.; WieciŃSki, P.; Adamczyk-CieŚLak, B.; Mizera, J.; KurzydŁOwski, K.J. Studies of Aluminium Coatings Deposited by Vacuum Evaporation and Magnetron Sputtering. J. Microsc. 2010, 237, 475–480. [Google Scholar] [CrossRef]
- Wang, B.; Fu, X.; Song, S.; Chu, H.O.; Gibson, D.; Li, C.; Shi, Y.; Wu, Z. Simulation and Optimization of Film Thickness Uniformity in Physical Vapor Deposition. Coatings 2018, 8, 325. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, M.; Dai, S.; Zhu, L. Research Progress in Electrospark Deposition Coatings on Titanium Alloy Surfaces: A Short Review. Coatings 2023, 13, 1473. [Google Scholar] [CrossRef]
- Dongguang, L.; Ruan, C.F.; Peng, Z.; Haoran, M.; Yan, L.; Jiangping, T. Structural, Interface Texture and Toughness of TiAlN/CNx Multilayer Films. Mater. Charact. 2021, 178, 111301. [Google Scholar]
- Wang, Y.; Zhang, J.; Wang, Y.; Wang, C.; Guo, W.; Lu, X.; Sui, Y.; Lan, J. Inhibiting Tribocorrosion Damage of Cr/CrxN Coatings by Multi-Layer Design. Ceram. Int. 2021, 47, 842–850. [Google Scholar] [CrossRef]
- Bondarev, A.V.; Kiryukhantsev-Korneev, P.V.; Levashov, E.A.; Shtansky, D.V. Tribological Behavior and Self-Healing Functionality of TiNbCN-Ag Coatings in Wide Temperature Range. Appl. Surf. Sci. 2017, 396, 110–120. [Google Scholar] [CrossRef]
- Zhang, M.; Feng, Y.; Wang, Y.; Niu, Y.; Xin, L.; Li, Y.; Su, J.; Zhu, S.; Wang, F. Corrosion Behaviors of Nitride Coatings on Titanium Alloy in NaCl-Induced Hot Corrosion. Acta Metall. Sin. 2021, 34, 1434–1446. [Google Scholar] [CrossRef]
- Andrei, S.; Mart, V.; Maksim, A.; Jakob, K.; Kristjan, J.; Priit, K.; Heinar, V.; Vytenis, J.; Rimtautas, L.; Regita, B.; et al. Effect of Laser Heat Treatment on AlxTi1−xN-Based PVD Coatings, Deposited on Carbon and Tool Steel Substrates. Surf. Coat. Technol. 2022, 446, 128771. [Google Scholar]
- Ananthakumar, R.; Subramanian, B.; Kobayashi, A.; Jayachandran, M. Electrochemical Corrosion and Materials Properties of Reactively Sputtered TiN/TiAlN Multilayer Coatings. Ceram. Int. 2011, 38, 477–485. [Google Scholar] [CrossRef]
- Bao, Y.; Wang, W.; Cui, W.; Qin, G. Corrosion Resistance and Antibacterial Activity of Ti-N-O Coatings Deposited on Dental Titanium Alloy. Surf. Coat. Technol. 2021, 419, 127296. [Google Scholar] [CrossRef]
- Cui, W.-F.; Niu, F.-J.; Tan, Y.-L.; Qin, G.-W. Microstructure and Tribocorrosion Performance of Nanocrystalline TiN Graded Coating on Biomedical Titanium Alloy. Trans. Nonferrous Met. Soc. China 2019, 29, 1026–1035. [Google Scholar] [CrossRef]
- Cui, W.; Cheng, J.; Liu, Z. Bio-Tribocorrosion Behavior of a Nanocrystalline TiZrN Coating on Biomedical Titanium Alloy. Surf. Coat. Technol. 2019, 369, 79–86. [Google Scholar] [CrossRef]
- Li, W.; Wang, Y.; Li, X.; Zhou, X.; Liu, L.; Li, X.; Jiang, X.; Xiong, C.; Chen, Y.; You, F. Effect of N2 Ratio on the Conductivity and Corrosion Resistance of TiN/TaN Coating on TC4 Bipolar Plates for PEMFC. Mater. Today Commun. 2025, 42, 111415. [Google Scholar] [CrossRef]
- Anusha Thampi, A.T.; Bendavid, A.; Martin, P.J.; Vaithilingam, V.; Bean, P.A.; Evans, M.D.M.; Subramanian, B. Biomineralisation with Saos-2 Bone Cells on TiSiN Sputtered Ti Alloys. Colloids Surf. B Biointerfaces 2017, 155, 1–10. [Google Scholar]
- Zhang, M.; Gao, A.; Ma, S.; Xu, K.; Chu, P.K. Corrosion Resistance of Ti-Si-N Coatings in Blood and Cytocompatibility with Vascular Endothelial Cells. Vacuum 2016, 128, 45–55. [Google Scholar] [CrossRef]
- Yi, P.; Peng, L.; Huang, J. Multilayered TiAlN Films on Ti6Al4V Alloy for Biomedical Applications by Closed Field Unbalanced Magnetron Sputter Ion Plating Process. Mater. Sci. Eng. C 2016, 59, 669–676. [Google Scholar] [CrossRef]
- Hussein, M.A.; Kumar, A.M.; Ankah, N.; Abdul Azeem, M. Thermal Treatment Effect on the Surface and in Vitro Corrosion Characteristics of Arc Deposited TiN Coating on Ti Alloy for Orthopedic Applications. Ceram. Int. 2021, 47, 23203–23213. [Google Scholar] [CrossRef]
- Liang, C.-L.; Cheng, G.-A.; Zheng, R.-T.; Liu, H.-P. Fabrication and Performance of TiN/TiAlN Nanometer Modulated Coatings. Thin Solid Film. 2011, 520, 813–817. [Google Scholar] [CrossRef]
- Ke, L.; Fuliang, M.; Ming, L.; Minpeng, D.; Yebiao, Z.; Yongxin, W.; Xuedong, W.; Xiang, L.; Jinlong, L. Structure and Tribocorrosion Behavior of TiAlCN Coatings with Different Al Contents in Artificial Seawater by Multi-Arc Ion Plating. Surf. Topogr.-Metrol. Prop. 2021, 9, 5004. [Google Scholar]
- Li, T.; Yan, Z.; Liu, Z.; Yan, Y.; Chen, Y. Surface Microstructure and Performance of TiN Monolayer Film on Titanium Bipolar Plate for PEMFC. Int. J. Hydrogen Energy 2021, 46, 31382–31390. [Google Scholar] [CrossRef]
- SUN, Z.; HE, G.; MENG, Q.; LI, Y.; TIAN, X. Corrosion Mechanism Investigation of TiN/Ti Coating and TC4 Alloy for Aircraft Compressor Application. Chin. J. Aeronaut. 2020, 33, 1824–1835. [Google Scholar] [CrossRef]
- Vargas, S.; Galeano-Osorio, D.S.; Castano, C.E. Controlling Preferential Growth of Chromium—Nitrogen R-HiPIMS and R-DCMS Films by Substrate Magnetic Biasing. Appl. Surf. Sci. 2021, 569, 151113. [Google Scholar] [CrossRef]
- Mejía V., H.D.; Perea, D.; Bejarano, G. Development and Characterization of TiAlN (Ag, Cu) Nanocomposite Coatings Deposited by DC Magnetron Sputtering for Tribological Applications. Surf. Coat. Technol. 2020, 381, 125095. [Google Scholar]
- Kiryukhantsev-Korneev, P.V.; Kuptsov, K.A.; Tabachkova, N.Y.; Andreev, N.V.; Sagalova, T.B.; Golizadeh, M.; Bondarev, A.V. Studying the Diffusion-Barrier Properties, Thermal Stability and Oxidation Resistance of TiAlSiCN, TiAlSiCN/AlOx, and TiAlSiCN/SiBCN Coatings. Prot. Met. Phys. Chem. Surf. 2021, 57, 1008–1024. [Google Scholar] [CrossRef]
- Yaqub, T.B.; Yaqoob, K.; Mukhtar, A.; Fernandes, F.; Bondarev, A.; Ferreira, F.; Al-Rjoub, A.; Cavaleiro, A. Vacuum Tribological Properties of W-S-N Coatings Synthesized by Direct Current Magnetron Sputtering. Coatings 2022, 12, 1646. [Google Scholar] [CrossRef]
- Gudmundsson, J.T. Physics and Technology of Magnetron Sputtering Discharges. Plasma Sources Sci. Technol. 2020, 29, 113001. [Google Scholar] [CrossRef]
- Pana, I.; Braic, V.; Vladescu, A.; Ion, R.; Parau, A.C.; Zoita, N.C.; Dinu, M.; Kiss, A.E.; Cimpean, A.; Braic, M. SiC- and Ag-SiC-Doped Hydroxyapatite Coatings Grown Using Magnetron Sputtering on Ti Alloy for Biomedical Application. Coatings 2022, 12, 195. [Google Scholar] [CrossRef]
- Zhang, K.; Li, J.; Zhang, Y.; Yu, X.; Zhou, Y.; Gao, P. Aluminum Coating of Twinning-Induced Plasticity Plates Via Plasma-Enhanced Magnetron Sputtering as a Potential Industrial Technique. Surf. Coat. Technol. 2021, 411, 126937. [Google Scholar] [CrossRef]
- Babur, M.Z.; Iqbal, Z.; Shafiq, M.; Naz, M.Y.; Makhlouf, M.M. Comparative Study of PVD Titanium Nitride Coating with Cathodic Cage Plasma Nitriding of Austenitic 201 Stainless Steel for Enhanced Tribological Properties. Appl. Phys. A 2021, 26, 954. [Google Scholar] [CrossRef]
- Niu, X.; Dong, G.; Wei, S.; Wang, Y.; Wang, B.; Tian, H. Effects of Nitrogen Flow Rate on the Microstructure and Mechanical and Tribological Properties of TiAlN Films Prepared Via Reactive Magnetron Sputtering. Ceram. Int. 2023, 49, 19885–19894. [Google Scholar] [CrossRef]
- Lü, W.; Li, G.; Zhou, Y.; Liu, S.; Wang, K.; Wang, Q. Effect of High Hardness and Adhesion of Gradient TiAlSiN Coating on Cutting Performance of Titanium Alloy. J. Alloys Compd. 2020, 820, 153137. [Google Scholar] [CrossRef]
- Lü, W.; Li, G.; Li, X.; Liu, S.; Deng, J.; Wang, Q. Effect of Pulsed Electric Field on the Nanocrystalline Growth of Magnetron-Sputtered TiAlN Hard Coatings. Ceram. Int. 2024, 50, 920–926. [Google Scholar] [CrossRef]
- Lofaj, F.; Kabátová, M.; Kvetková, L.; Dobrovodský, J.; Girman, V. Hybrid PVD-PECVD W-C:H Coatings Prepared by Different Sputtering Techniques: The Comparison of Deposition Processes, Composition and Properties. Surf. Coat. Technol. 2019, 375, 839–853. [Google Scholar] [CrossRef]
- Li, Y.; Wang, Z.W.; Zhang, Z.H.; Shao, M.H.; Lu, J.P.; Yan, J.W.; Zhang, L.; He, Y.Y. Microstructure and Tribological Properties of Multilayered ZrCrW(C)N Coatings Fabricated by Cathodic Vacuum-Arc Deposition. Ceram. Int. 2022, 48, 36655–36669. [Google Scholar] [CrossRef]
- Wongpanya, P.; Silawong, P.; Photongkam, P. Adhesion and Corrosion of Al–N Doped Diamond-Like Carbon Films Synthesized by Filtered Cathodic Vacuum Arc Deposition. Ceram. Int. 2022, 48, 20743–20759. [Google Scholar] [CrossRef]
- Zhang, X.; Tian, X.-B.; Gong, C.-Z.; Liu, X.-L.; Li, J. Effect of Plasma Nitriding Substrate Current Density on the Adhesion Strength of in Situ PVD TiN Coatings. J. Vac. Sci. Technol. A 2023, 41, 033405. [Google Scholar] [CrossRef]
- Wongpanya, P.; Silawong, P.; Photongkam, P. Nanomechanical Properties and Thermal Stability of Al–N-Co-Doped DLC Films Prepared by Filtered Cathodic Vacuum Arc Deposition. Surf. Coat. Technol. 2021, 424, 127655. [Google Scholar] [CrossRef]
- Tian, C.; Xiang, Y.; Zou, C.; Yu, Y.; Abudouwufu, T.; Yang, B.; Fu, D. Mechanical and Tribological Properties of CrWN/MoN Nano-Multilayer Coatings Deposited by Cathodic Arc Ion Plating. Coatings 2024, 14, 367. [Google Scholar] [CrossRef]
- Ding, F.; Wei, X.; Cao, J.; Ma, Y.; Su, H.; Zhao, T.; You, J.; Lv, Y. Thermal Corrosion Properties of Composite Ceramic Coating Prepared by Multi-Arc Ion Plating. Coatings 2024, 14, 1150. [Google Scholar] [CrossRef]
- Vengesa, Y.; Fattah-alhosseini, A.; Elmkhah, H.; Imantalab, O. Influence of Post-Deposition Annealing Temperature on Morphological, Mechanical and Electrochemical Properties of CrN/CrAlN Multilayer Coating Deposited by Cathodic Arc Evaporation- Physical Vapor Deposition Process. Surf. Coat. Technol. 2022, 432, 128090. [Google Scholar] [CrossRef]
- Yang, J.; Cao, H.; Li, Y.; Liu, F.; Tang, Y.; Zhao, N.; Qi, F.; Ouyang, X. Microstructure, Mechanical Properties, and Corrosion Resistance of TiSiN Coating Prepared by FCVA Technique with Different N2 Flow Rates. Vacuum 2023, 209, 111811. [Google Scholar] [CrossRef]
- Pooneh, P.; Hassan, E.; Yousef, M. Correlation Between Nanoindentation Response and Wear Characteristics of CrN-Based Coatings Deposited by an Arc-PVD Method. Int. J. Appl. Ceram. Technol. 2022, 19, 2598–2612. [Google Scholar]
- Chaochao, J.; Qiaoqin, G.; Jianping, L.; Yongchun, G.; Zhong, Y.; Wei, Y.; Dapeng, X.; Bo, Y. Microstructure and Properties of CrN Coating Via Multi-Arc Ion Plating on the Valve Seat Material Surface. J. Alloys Compd. 2022, 891, 160859. [Google Scholar]
- Wang, Y.; Gao, Y.; Fan, Y. Interfacial Modification of Ti3AlC2/Cu Composites by Multi-Arc Ion Plating Titanium. Coatings 2022, 12, 1754. [Google Scholar] [CrossRef]
- Zhang, M.; Xin, L.; Ding, X.; Zhu, S.; Wang, F. Effects Ti/TiAlN Composite Multilayer Coatings on Corrosion Resistance of Titanium Alloy in Solid NaCl-H2O-O2 at 600 °C. J. Alloys Compd. 2018, 734, 307–317. [Google Scholar] [CrossRef]
- Nolan, D.; Huang, S.W.; Leskovsek, V.; Braun, S. Sliding Wear of Titanium Nitride Thin Films Deposited on Ti–6Al–4V Alloy by PVD and Plasma Nitriding Processes. Surf. Coat. Technol. 2006, 200, 5698–5705. [Google Scholar] [CrossRef]
- Mohammed, F.K.; Ramizy, A.; Ahmed, N.M.; Yam, F.K.; Hassan, Z.; Beh, K.P. Characteristics of Aluminium Nitride Thin Film Prepared by Pulse Laser Deposition with Varying Laser Pulses. Opt. Mater. 2024, 153, 115622. [Google Scholar] [CrossRef]
- Gatabi, J.R.; Rahman, S.; Amaro, A.; Nash, T.; Rojas-Ramirez, J.; Pandey, R.K.; Droopad, R. Tuning Electrical Properties of PZT Film Deposited by Pulsed Laser Deposition. Ceram. Int. 2017, 43, 6008–6012. [Google Scholar] [CrossRef]
- Dellasega, D.; Russo, V.; Pezzoli, A.; Conti, C.; Lecis, N.; Besozzi, E.; Beghi, M.; Bottani, C.E.; Passoni, M. Boron Films Produced by High Energy Pulsed Laser Deposition. Mater. Des. 2017, 134, 35–43. [Google Scholar] [CrossRef]
- Chen, L.; Komasa, S.; Hashimoto, Y.; Hontsu, S.; Okazaki, J. In Vitro and In Vivo Osteogenic Activity of Titanium Implants Coated by Pulsed Laser Deposition with a Thin Film of Fluoridated Hydroxyapatite. Int. J. Mol. Sci. 2018, 19, 1127. [Google Scholar] [CrossRef]
- Dumitrescu, L.N.; Ionita, E.-R.; Birjega, R.; Lazea-Stoyanova, A.; Ionita, M.-D.; Epurescu, G.; Banici, A.-M.; Brajnicov, S.; Andrei, F.; Matei, A. Kaolinite Thin Films Grown by Pulsed Laser Deposition and Matrix Assisted Pulsed Laser Evaporation. Nanomaterials 2022, 12, 546. [Google Scholar] [CrossRef]
- Antonova, K.; Duta, L.; Szekeres, A.; Stan, G.E.; Mihailescu, I.N.; Anastasescu, M.; Stroescu, H.; Gartner, M. Influence of Laser Pulse Frequency on the Microstructure of Aluminum Nitride Thin Films Synthesized by Pulsed Laser Deposition. Appl. Surf. Sci. 2017, 394, 197–204. [Google Scholar] [CrossRef]
- Bhuyan, H.; Escalona, M.; Villegas, R.; Mal, E.; Cisternas, M.; Saikia, P.; Bora, B.; Kausik, S.S.; Wyndham, E.; Favre, M. Effect of RF Acetylene Plasma on the Composition and Dynamics of a Titanium Plasma Plume in a Plasma Enhanced Pulsed Laser Deposition System. Opt. Laser Technol. 2025, 181, 111803. [Google Scholar] [CrossRef]
- Liu, X.; Xu, W.; Xu, M.; Hao, X.; Feng, X. Epitaxial CuO Thin Films Prepared on MgAl2O4 (110) by RF-Plasma Assisted Pulsed Laser Deposition. Vacuum 2019, 169, 108932. [Google Scholar] [CrossRef]
- Yao, C.; Zhang, D.; Wu, L.; Xu, N.; Sun, J.; Wu, J. Structure and Optical Properties of ZrxHf1−xO2 Films Deposited by Pulsed Laser Co-Ablation of Zr and Hf Targets with the Assistance of Oxygen Plasma. Ceram. Int. 2022, 48, 587–596. [Google Scholar] [CrossRef]
- Slepička, P.; Hurtuková, K.; Rimpelová, S.; Trhoňová, Š.; Martan, J.; Procházka, M.; Švorčík, V.; Slepičková Kasálková, N. Ti and TiAlV Foils Enhanced with PLD and Flash-Deposited Carbon: On Cytocompatibility and Antibacterial Activity. J. Adv. Join. Process. 2025, 11, 100274. [Google Scholar] [CrossRef]
- Gnanavel, S.; Ponnusamy, S.; Sivakumar, K.; Priyadarshini, D. Electrochemical and Biological Behaviour of Near β Titanium Alloy for Biomedical Implant Applications. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 2021, 236, 233–241. [Google Scholar] [CrossRef]
- Floroian, L.; Craciun, D.; Socol, G.; Dorcioman, G.; Socol, M.; Badea, M.; Craciun, V. Titanium Implants’ Surface Functionalization by Pulsed Laser Deposition of TiN, ZrC and ZrN Hard Films. Appl. Surf. Sci. 2017, 417, 175–182. [Google Scholar] [CrossRef]
- Gürsoy, M. Fabrication of pH-Responsive PDPAEMA Thin Film Using a One-Step Environmentally Friendly Plasma Enhanced Chemical Vapor Deposition. Coatings 2024, 14, 347. [Google Scholar] [CrossRef]
- Parastoo, M.; Rasoul, S.-M.; Hossein, A. Preparation of Titanium Nitride/Oxynitride Nanotube Array Via Ammonia-Free PECVD Method for Enhancing Supercapacitor Performance. J. Alloys Compd. 2022, 904, 163895. [Google Scholar]
- Cichomski, M.; Burnat, B.; Prowizor, M.; Jedrzejczak, A.; Batory, D.; Piwoński, I.; Kozłowski, W.; Szymanski, W.; Dudek, M. Tribological and Corrosive Investigations of Perfluoro and Alkylphosphonic Self-Assembled Monolayers on Ti Incorporated Carbon Coatings. Tribol. Int. 2019, 130, 359–365. [Google Scholar] [CrossRef]
- Zilong, Z.; Qiang, M.; Wenping, L.; Jinjiao, X.; Hao, L.; Yan, Q.; Shiwei, Z. Effect of CrAl Interlayer on Adhesion Strength of CrAlN Coating. Surf. Eng. 2020, 36, 438–446. [Google Scholar]
- Braceras, I.; Ibáñez, I.; Dominguez-Meister, S.; Velasco, X.; Brizuela, M.; Garmendia, I. Electro-Tribological Properties of Diamond Like Carbon Coatings. Friction 2020, 8, 451–461. [Google Scholar] [CrossRef]
- Tahir, N.A.M.; Abdollah, M.F.B.; Tamaldin, N.; Zin, M.R.B.M.; Amiruddin, H. Optimisation of Graphene Grown from Solid Waste Using CVD Method. Int. J. Adv. Manuf. Technol. 2020, 106, 211–218. [Google Scholar] [CrossRef]
- Çelik, A.; Demirdelen, M.; Tüzemen, Ş.M.; Kovacı, H. Improving the Corrosion Resistance of Ti6Al4V Alloy Through TiN/Polyaniline Hybrid Films Produced by Plasma Nitriding and PECVD. Appl. Surf. Sci. 2025, 692, 162697. [Google Scholar] [CrossRef]
- Bedarev, V.; Maaß, P.A.; Thewes, A.; Böke, M.; von Keudell, A. Plasma Deposited Carbon Containing Zirconia Films as Thermal Barriers. J. Vac. Sci. Technol. A 2023, 41, 3001. [Google Scholar] [CrossRef]
- Joo, S.H.; Kim, Y.K.; Lee, S.-J.; Kim, J.-P. Dry Media Reaction-Based Anti-Hydration Coating on Magnesium Oxide Microspheres for Thermal Interfacial Applications. Appl. Surf. Sci. 2024, 672, 160855. [Google Scholar] [CrossRef]
- Nass, K.C.F.; Radi, P.A.; Leite, D.M.G.; Massi, M.; da Silva Sobrinho, A.S.; Dutra, R.C.L.; Vieira, L.; Reis, D.A.P. Tribomechanical and Structural Properties of a-SiC:H Films Deposited Using Liquid Precursors on Titanium Alloy. Surf. Coat. Technol. 2015, 284, 240–246. [Google Scholar] [CrossRef]
- Mohan, L.; Anandan, C.; Grips, V.K.W. Corrosion Behavior of Titanium Alloy Beta-21S Coated with Diamond Like Carbon in Hank’s Solution. Appl. Surf. Sci. 2012, 258, 6331–6340. [Google Scholar] [CrossRef]
- Swiatek, L.; Olejnik, A.; Grabarczyk, J.; Jedrzejczak, A.; Sobczyk-Guzenda, A.; Kaminska, M.; Jakubowski, W.; Szymanski, W.; Bociaga, D. Multi-Doped Diamond Like-Carbon Coatings (DLC-Si/Ag) for Biomedical Applications Fabricated Using the Modified Chemical Vapour Deposition Method. Diam. Relat. Mater. 2016, 67, 54–62. [Google Scholar] [CrossRef]
- Sitek, R.; Bolek, T.; Mizera, J. Microstructure and Properties of Ti-Al Intermetallic/Al2O3 Layers Produced on Ti6Al2Mo2Cr Titanium Alloy by PACVD Method. Appl. Surf. Sci. 2018, 437, 19–27. [Google Scholar] [CrossRef]
- Gao, K.; Zhang, Y.; Yi, J.; Dong, F.; Chen, P. Overview of Surface Modification Techniques for Titanium Alloys in Modern Material Science: A Comprehensive Analysis. Coatings 2024, 14, 148. [Google Scholar] [CrossRef]
- Song, X.; Zhao, M.; Li, D. Controllable Ag/Ta Ratios of Co-Implanted TiN Films on Titanium Alloys for Osteogenic Enhancement and Antibacterial Responses. Surf. Coat. Technol. 2022, 436, 128294. [Google Scholar] [CrossRef]
- Dai, J.; Liu, Z.; Yu, B.; Ruan, Q.; Chu, P.K. Effects of Ti, Ni, and Dual Ti/Ni Plasma Immersion Ion Implantation on the Corrosion and Wear Properties of Magnesium Alloy. Coatings 2020, 10, 313. [Google Scholar] [CrossRef]
- Zhao, Y.; Wong, S.M.; Wong, H.M.; Wu, S.; Hu, T.; Yeung, K.W.; Chu, P.K. Effects of Carbon and Nitrogen Plasma Immersion Ion Implantation on in Vitro and in Vivo Biocompatibility of Titanium Alloy. ACS Appl. Mater. Interfaces 2013, 5, 1510. [Google Scholar] [CrossRef]
- Vlcak, P.; Fojt, J.; Weiss, Z.; Kopeček, J.; Perina, V. The Effect of Nitrogen Saturation on the Corrosion Behaviour of Ti-35Nb-7Zr-5Ta Beta Titanium Alloy Nitrided by Ion Implantation. Surf. Coat. Technol. 2019, 358, 144–152. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, H.; Wang, B.; Huang, J.; Zhou, M.; Wang, L.; Xi, Y.; Jia, H.; Xu, S.; Liu, H.; et al. A Review of Research on Improving Wear Resistance of Titanium Alloys. Coatings 2024, 14, 786. [Google Scholar] [CrossRef]
- Ghorbel, H.F.; Guidara, A.; Danlos, Y.; Bouaziz, J.; Coddet, C. Alumina-Fluorapatite Composite Coating Deposited by Atmospheric Plasma Spraying: An Agent of Cohesion Between Bone and Prostheses. Mater. Sci. Eng. C 2017, 71, 1090–1098. [Google Scholar] [CrossRef]
- Adachi, S.; Ueda, N. Formation of S-Phase Layer on Plasma Sprayed AISI 316L Stainless Steel Coating by Plasma Nitriding at Low Temperature. Thin Solid Film. 2012, 523, 11–14. [Google Scholar] [CrossRef]
- Nelson, G.M.; Nychka, J.A.; McDonald, A.G. Flame Spray Deposition of Titanium Alloy-Bioactive Glass Composite Coatings. J. Therm. Spray Technol. 2011, 20, 1339–1351. [Google Scholar] [CrossRef]
- Smith, M.F.; Hall, A.C.; Fleetwood, J.D.; Meyer, P. Very Low Pressure Plasma Spray—A Review of an Emerging Technology in the Thermal Spray Community. Coatings 2011, 1, 117–132. [Google Scholar] [CrossRef]
- Heimann, R.B. The Nature of Plasma Spraying. Coatings 2023, 13, 622. [Google Scholar] [CrossRef]
- Wang, G.; Liu, J.; Yang, J.; Liu, S.; Bu, L.; Chen, J. Study of the Performance of Laser Melting Wear-Resistant Coatings on TC4 Titanium Alloy Surfaces. Coatings 2024, 14, 730. [Google Scholar] [CrossRef]
- Bobzin, K.; Öte, M.; Schein, J.; Zimmermann, S. Numerical Study on Plasma Jet and Particle Behavior in Multi-arc Plasma Spraying. J. Therm. Spray Technol. 2017, 26, 811–830. [Google Scholar] [CrossRef]
- Anand, A.; Das, M.; Kundu, B.; Balla, V.K.; Bodhak, S.; Gangadharan, S. Plasma-Sprayed Ti6Al4V Alloy Composite Coatings Reinforced with In Situ Formed TiB-TiN. J. Therm. Spray Technol. 2017, 26, 2013–2019. [Google Scholar] [CrossRef]
- Alontseva, D.; Safarova, Y.; Voinarovych, S.; Obrosov, A.; Yamanoglu, R.; Khoshnaw, F.; Yavuz, H.I.; Nessipbekova, A.; Syzdykova, A.; Azamatov, B.; et al. Biocompatibility and Corrosion of Microplasma-Sprayed Titanium and Tantalum Coatings versus Titanium Alloy. Coatings 2024, 14, 206. [Google Scholar] [CrossRef]
- Cao, L.; Ullah, I.; Li, N.; Niu, S.; Sun, R.; Xia, D.; Yang, R.; Zhang, X. Plasma Spray of Biofunctional (Mg, Sr)-Substituted Hydroxyapatite Coatings for Titanium Alloy Implants. J. Mater. Sci. Technol. 2019, 35, 719–726. [Google Scholar] [CrossRef]
- Singh, S.; Pandey, K.K.; Keshri, A.K. Effect of Plasma Power on Corrosion Behaviour of Plasma Sprayed Hydroxyapatite Coatings. Met. Mater. Int. 2021, 27, 4455–4462. [Google Scholar] [CrossRef]
- Qadir, D.; Sharif, R.; Nasir, R.; Awad, A.; Mannan, H.A. A Review on Coatings Through Thermal Spraying. Chem. Pap. 2024, 78, 71–91. [Google Scholar] [CrossRef]
- Zhao, W.; Kong, D. Microstructure, Bonding Strength, and Friction–Wear Performance of AlCrN/Nitrided Layer Composite Coating on H13 Hot Work Mould Steel. Int. J. Appl. Ceram. Technol. 2019, 16, 951–965. [Google Scholar] [CrossRef]
- Broch, M.; Fontoura, C.P.; Lima, A.O.; Ordoñez, M.F.; Machado, I.F.; Aguzzoli, C.; Farias, M.C. Scratch Response of Hollow Cathode Radiofrequency Plasma-Nitrided and Sintered 316L Austenitic Stainless Steel. Coatings 2024, 14, 334. [Google Scholar] [CrossRef]
- Abakay, E.; Armağan, M.; Avcu, Y.Y.; Guney, M.; Yousif, B.F.; Avcu, E. Advances in Improving Tribological Performance of Titanium Alloys and Titanium Matrix Composites for Biomedical Applications: A Critical Review. Front. Mater. 2024, 11, 1452288. [Google Scholar] [CrossRef]
- Dalibon, E.L.; Moreira, R.D.; Guitar, M.A.; Trava-Airoldi, V.J.; Brühl, S.P. Influence of the Substrate Pre-Treatment on the Mechanical and Corrosion Response of Multilayer DLC Coatings. Diam. Relat. Mater. 2021, 118, 108507. [Google Scholar] [CrossRef]
- Krella, A. Resistance of PVD Coatings to Erosive and Wear Processes: A Review. Coatings 2020, 10, 921. [Google Scholar] [CrossRef]
- Panjan, P.; Drnovšek, A.; Gselman, P.; Čekada, M.; Panjan, M. Review of Growth Defects in Thin Films Prepared by PVD Techniques. Coatings 2020, 10, 447. [Google Scholar] [CrossRef]
- Yaqoob, S.; Ghani, J.A.; Jouini, N.; Juri, A.Z. Performance Evaluation of PVD and CVD Multilayer-Coated Tools in Machining High-Strength Steel. Coatings 2024, 14, 865. [Google Scholar] [CrossRef]
- Han, W.; Fang, S.; Zhong, Q.; Qi, S. Influence of Dental Implant Surface Modifications on Osseointegration and Biofilm Attachment. Coatings 2022, 12, 1654. [Google Scholar] [CrossRef]
- Pavol, Š.; Miroslav, B.; Ernest, G.; František, T.; Roman, P. Wear of AlCrN and CrAlSiN Coatings Applied to Nonstandard Involute Gears. Lubricants 2021, 9, 54. [Google Scholar]
- Filho, E.A.M.; Naeem, M.; Díaz-Guillén, J.C.; Sousa, E.M.; Costa, T.H.C.; Iqbal, J.; Sousa, R.R.M. Microstructure, Mechanical, and Tribological Properties of Transition Metal (Nb, V, W) Nitride Coating on AISI-1045 Steel by Cathodic Cage Plasma Deposition. J. Vac. Sci. Technol. A 2024, 42, 053105. [Google Scholar] [CrossRef]
- Rahimi, E.; Nijdam, T.; Jahagirdar, A.; Broitman, E.; Mol, A. A Combined Microstructural, Electrochemical and Nanomechanical Study of the Corrosion and Passivation Properties of a Cr/CrN Multilayer Coating. Corros. Sci. 2025, 252, 112943. [Google Scholar] [CrossRef]
- Qi, J.L.; Wang, L.P.; Hao, J.; Zhang, Y.; He, X.J.; Pang, H.P.; Zhang, K.; Wen, M. Self-Adaptive Root-Like Capillary Diffusion Channels Enabled by TaN/Zr3N4 Nanomultilayered Architecture: Achieving Superior Corrosion Resistance. Mater. Des. 2023, 225, 111555. [Google Scholar] [CrossRef]
- Naeem, M.; Awan, S.; Shafiq, M.; Raza, H.A.; Iqbal, J.; Díaz-Guillén, J.C.; Sousa, R.R.M.; Jelani, M.; Abrar, M. Wear and Corrosion Studies of Duplex Surface-Treated AISI-304 Steel by a Combination of Cathodic Cage Plasma Nitriding and PVD-TiN Coating. Ceram. Int. 2022, 48, 21473–21482. [Google Scholar] [CrossRef]
- Tjandra, J.; Alabort, E.; Barba, D.; Pedrazzini, S. Corrosion, Fatigue and Wear of Additively Manufactured Ti Alloys for Orthopaedic Implants. Mater. Sci. Technol. 2023, 39, 2951–2965. [Google Scholar] [CrossRef]
- Manhabosco, T.M.; Barboza, A.P.M.; Batista, R.J.C.; Neves, B.R.A.; Müller, I.L. Corrosion, Wear and Wear–Corrosion Behavior of Graphite-Like a-C:H Films Deposited on Bare and Nitrided Titanium Alloy. Diam. Relat. Mater. 2013, 31, 58–64. [Google Scholar] [CrossRef]
- Zhao, Y.; Yu, P.; Wu, L.; Zhang, X.; Wei, P.; Zhao, J. Corrosion-Induced Deceleration-to-Acceleration of Fatigue Crack Growth for Deep-Sea Ti6Al4V ELI Titanium Alloy. Eng. Fract. Mech. 2023, 281, 109160. [Google Scholar] [CrossRef]
- Tang, J.; Luo, H.; Qi, Y.; Xu, P.; Ma, S.; Zhang, Z.; Ma, Y. The Effect of Cryogenic Burnishing on the Formation Mechanism of Corrosion Product Film of Ti-6Al-4V Titanium Alloy in 0.9% NaCl Solution. Surf. Coat. Technol. 2018, 345, 123–131. [Google Scholar] [CrossRef]
- Zhang, C.; Wen, K.; Gao, Y. Low-Temperature Plasma Nitriding at 500 °C on Surface-Nanocrystalline Ti–4Al–2V Alloy. Mater. Chem. Phys. 2023, 306, 128080. [Google Scholar] [CrossRef]
- Zhang, J.; Li, K.; Hu, J. Performances Investigation of Ti6Al4V Alloy Modified by Plasma Nitriding + Plasma Enhanced Chemical Vapor Deposition and Laser Remelting Process in Simulated Body Fluid. Met. Mater. Int. 2020, 27, 4757–4767. [Google Scholar] [CrossRef]
- Esfahani, E.A.; Bukuaghangin, O.; Banfield, S.; Vangölü, Y.; Yang, L.; Neville, A.; Hall, R.; Bryant, M. Surface Engineering of Wrought and Additive Layer Manufactured Ti-6Al-4V Alloy for Enhanced Load Bearing and Bio-Tribocorrosion Applications. Surf. Coat. Technol. 2022, 442, 128139. [Google Scholar] [CrossRef]
- Liu, C.; Zhao, M.; Song, X.; Li, D. The Comparative Biological Properties of Mg+ or Ca+ Implanted Cu–TiN Nanocomposite Coatings on Titanium Alloys. Vacuum 2021, 194, 110618. [Google Scholar] [CrossRef]
- Kuang, X.; Li, L.; Wang, L.; Li, G.; Huang, K.; Xu, Y. The Effect of N+ Ion-Implantation on the Corrosion Resistance of HiPIMS-TiN Coatings Sealed by ALD-Layers. Surf. Coat. Technol. 2019, 374, 72–82. [Google Scholar] [CrossRef]
- Dong, M.; Zhu, Y.; Wang, C.; Shan, L.; Li, J. Structure and Tribocorrosion Properties of Duplex Treatment Coatings of TiSiCN/Nitride on Ti6Al4V Alloy. Ceram. Int. 2019, 45, 12461. [Google Scholar] [CrossRef]
- Zhao, C.; Gao, W.; Wang, J.; Ju, J.; Li, J. A Novel Biomedical TiN-Embedded TiO2 Nanotubes Composite Coating with Remarkable Mechanical Properties, Corrosion, Tribocorrosion Resistance, and Antibacterial Activity. Ceram. Int. 2023, 49, 15629–15640. [Google Scholar] [CrossRef]
- Cheraghali, B.; Ghasemi, H.M.; Abedini, M.; Yazdi, R. A Functionalized Duplex Coating on CP-Titanium for Biomedical Applications. Surf. Coat. Technol. 2020, 399, 126117. [Google Scholar] [CrossRef]
- Sypniewska, J.; Szkodo, M.; Majkowska-Marzec, B.; Mielewczyk-Gryń, A.D. Exploring the Composition and Corrosion Resistance in Hybrid-Modified Ti13Nb13Zr Alloy. MRS Commun. 2024, 14, 1439–1445. [Google Scholar] [CrossRef]
- Çaha, I.; Alves, A.C.; Chirico, C.; Pinto, A.M.; Tsipas, S.; Gordo, E.; Toptan, F. Improved Tribocorrosion Behavior on bio-Functionalized β-Type Titanium Alloy by the Pillar Effect Given by TiN Reinforcements. Surf. Coat. Technol. 2021, 415, 127122. [Google Scholar] [CrossRef]
- Xu, Y.; Yao, Z.; He, X.; Wang, J.; Zheng, M.; Wang, R.; Wu, X. In-Situ Growth of PEO/UiO-66(Ce) Nanozyme Coatings on Titanium Alloy for Antibacterial Applications. Surf. Coat. Technol. 2025, 515, 132627. [Google Scholar] [CrossRef]
- Joo, S.Y.; Nisar, S.S.; Lee, J.K.; Choe, H.-C. Calcium Silicate Ceramic Coatings on the Plasma Electrolytic Oxidized Ti-6Al-4V Alloy Using Spin Coating Method. Surf. Coat. Technol. 2024, 479, 130575. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, H.; Sun, W.; Si, C.; Wang, J. Shot Peening Pre-Treatment for Nano-Nitriding Layer Formation to Enhance Wear and Corrosion Resistance in Medical Titanium Alloys. Mater. Lett. 2024, 368, 136669. [Google Scholar] [CrossRef]
- Ren, L.; Wang, T.; Chen, Z.; Li, Y.; Qian, L. Self-Lubricating PEO–PTFE Composite Coating on Titanium. Metals 2019, 9, 170. [Google Scholar] [CrossRef]
Ref. | Matrix | Environment | Technology | Phase | Nitrided Layer Thickness (μm) | Icorr (A/cm2) | Ecorr (V) |
---|---|---|---|---|---|---|---|
Shen et al. [140] | Ti | 3.5% NaCl | α-Ti | 7 × 10−5 | −0.59 | ||
PN | TiN Ti2N | 6.5 | 9 × 10−7 | −0.36 | |||
Yu et al. [80] | Ti6Al4V | SBF | Ti6Al4V | 6.6 × 10−6 | −1.207 | ||
PN | TiN Ti2N | 2~3 | 2.6 × 10−7 | −0.74 | |||
Li et al. [141] | EBM Ti6Al4V | natural seawater | α-Ti β-Ti | 7 × 10−5 | −0.26 | ||
PN | TiN Ti2N | 7–12 | 3.39 × 10−8 | −0.29 | |||
Mohan et al. [142] | Ti–15Mo–3Nb–3Al–0.2Si | Hank’s solution | β-Ti | 5.7 × 10−5 | −0.436 | ||
PN | TiN Ti2N | 1.2 × 10−8 | −0.261 | ||||
Manhabosco et al. [143] | Ti6Al4V | PBS solution | α-Ti β-Ti | 8 × 10−7 | −0.7 | ||
PN | TiN Ti2N | 1 | 6.2 × 10−7 | −0.24 | |||
M. Tarnowski et al. [144] | Hank’s solution | α-Ti β-Ti | 2.74 × 10−8 | −0.115 | |||
PN | TiN Ti2N | 2.45 × 10−8 | −0.005 | ||||
Kamiński et al. [145] | Grade 2 titanium | Ringer’s solution | α-Ti | 7.13 × 10−8 | −0.3 | ||
ASPN | TiN Ti2N | 2 | 1.9 × 10−8 | −0.23 | |||
Shen et al. [146] | Ti6Al4V | 0.5 M H2SO4 and 2 ppm HF | α-Ti β-Ti | 6.64 × 10−6 | −0.415 | ||
ASPN | TiN Ti2N | 2 | 8.6 × 10−7 | 0.148 | |||
Zhang et al. [135] | Ti6Al4V | Hank’s solution | α-Ti β-Ti | 7.565 × 10−8 | −0.608 | ||
HCPN | TiN Ti2N | 6.4 | 7.645 × 10−8 | −0.32 | |||
Shen et al. [147] | Ti | pH 3 H2SO4 solution | α-Ti | 1.05 × 10−6 | −0.301 | ||
HCPN | TiN Ti2N | 2.1 | 2 × 10−8 | 0.309 | |||
A. Hussein et al. [148] | Ti20Nb13Zr | Hank’s solution | β-Ti | 2.8 × 10−7 | |||
HCPN | TiN Ti2N | 1.85 × 10−9 | |||||
El-Hossary et al. [149] | Ti | Ringer’s solution | α-Ti | 1.3 × 10−7 | 0.048 | ||
PN | TiN Ti2N | 13 | 5.9 × 10−8 | −0.227 |
Ref. | Environment | Surface Treatment | Component | Thickness of Coating (μm) | Icorr (A/cm2) | Ecorr (V) | |
---|---|---|---|---|---|---|---|
Ananthakumar et al. [169] | Ti | 3.5% NaCl | α-Ti | 7 × 10−5 | −0.837 | ||
MS | TiN TiAlN | 2 | 4.1 × 10−7 | −0.546 | |||
Bao et al. [170] | Ti6Al4V | artificial saliva solution | α-Ti β-Ti | ||||
MS | TiN | 3.37 × 10−7 | −0.37 | ||||
MS | TiN Ti-N-O | 8 | 6.02 × 10−8 | −0.36 | |||
Cui et al. [171] | Ti6Al4V | Hank’s solution | α-Ti β-Ti | 1.9 × 10−6 | −0.6 | ||
MS | TiN | 5 | 6.5 × 10−8 | −0.468 | |||
Cui et al. [172] | Ti6Al4V | Hank’s solution | α-Ti β-Ti | ||||
MS | TiN | 3 | 1.4 × 10−7 | −0.346 | |||
MS | TiN TiZrN | 6 | 8.45 × 10−8 | −0.333 | |||
Li et al. [173] | Ti6Al4V | 0.5 mM H2SO4 | α-Ti β-Ti | 2.99 × 10−6 | −0.345 | ||
MS | TiN TaN | 0.571 | 6.54 × 10−8 | −0.003 | |||
Thampi et al. [174] | Ti6Al4V | SBF | α-Ti β-Ti | 3.2 × 10−7 | −0.299 | ||
MS | TiSiN | 1.8 × 10−7 | −0.105 | ||||
Zhang et al. [175] | Ti6Al4V | Blood plasma at 37 °C | α-Ti β-Ti | 3.4 × 10−6 | −0.39 | ||
MS | TiSiN | 1 | 2.1 × 10−8 | −0.02 | |||
Yi et al. [176] | Ti6Al4V | Ringer’s solution | α-Ti β-Ti | 1.94 × 10−7 | −0.47 | ||
MS | TiAlN | 1.9 | 3.43 × 10−8 | −0.2 | |||
M.A. Hussein et al. [177] | Ti6Al4V | SBF | α-Ti β-Ti | 3.5 × 10−6 | −0.333 | ||
AIP | TiN | 5 | 2.23 × 10−7 | 0.063 | |||
Liang et al. [178] | Ti6Al4V | 5% NaCl | α-Ti β-Ti | 1.3 × 10−5 | −0.397 | ||
AIP | TiN TiAlN | 0.82 | 8 × 10−7 | 0.310 | |||
Liu et al. [179] | Ti6Al4V | artificial seawater | α-Ti β-Ti | 1.1× 10−5 | −0.275 | ||
MAIP | TiN TiAlCN | 3.39 | 1.46 × 10−6 | −0.230 | |||
Li et al. [180] | Ti | 0.5 M H2SO4 + 2 ppm HF solution at 70 °C | α-Ti | 3.34 × 10−6 | −0.49 | ||
MAIP | TiN | 4.7 × 10−7 | −0.33 | ||||
SUN et al. [181] | Ti6Al4V | 5% NaCl | α-Ti β-Ti | 3.1 × 10−7 | −0.497 | ||
MAIP | TiN | 15.75 | 1.14 × 10−7 | −0.198 |
Surface Treatment | Industrial Applications | Main Advantages | Limitations |
---|---|---|---|
PN | Submersible hull, turbine blades, bone implant | High diffusion efficiency, energy-saving and environmental protection abilities, and good bonding strength of the reinforcement layer | The temperature of the workpiece is difficult to accurately control, and complex shape processes have serious edge effects and arcing phenomena |
PVD | Dental implant, high-temperature-resistant coating for cutting tools | Excellent coating mechanical properties, environmentally friendly and pollution-free, high process stability | The sedimentation rate of MS is relatively low; AIP may have large particle deposition affecting coating quality |
PECVD | Bone implant, rotating blood pump, artificial heart, mechanical heart valve, coronary stent | Capable of handling workpieces with complex shapes | The by-products may have a certain degree of pollution; low process stability, requiring extensive experience accumulation |
PIII | Joint prostheses, fracture fixation devices | Capable of achieving all-round injection on complex shaped workpieces | The uniformity issue of injection dose, with a relatively shallow injection layer |
PS | Bone implants, dental implants | Able to spray almost all materials with melting points, with high efficiency and high energy to form very thick coatings | The porosity of the coating is relatively high; difficult to handle complex inner surfaces |
Ref. | Environment | Surface Treatment | Component | Thickness of Strengthened Layer (μm) | Icorr (A/cm2) | Ecorr (V) |
---|---|---|---|---|---|---|
Zhang et al. [267] | 3.5% NaCl | Ti4Al2V | 5 × 10−6 | −0.36 | ||
PN+shot peening | TiN Ti2N | 45 | 2.1 × 10−8 | −0.24 | ||
Zhang et al. [268] | SBF | Ti6Al4V | 1.43 × 10−5 | −0.201 | ||
PN+PECVD | TiN Ti2N | 3 | 5.3 × 10−8 | −0.163 | ||
Esfahani et al. [269] | serum solution | Ti6Al4V | 1 × 10−7 | −0.3 | ||
PVD | TiN | 3.8 | 6.7 × 10−8 | −0.1 | ||
TPON+PVD | TiN TiON | 3–6 | 6 × 10−8 | −0.05 | ||
Liu et al. [270] | PBS | Ti6Al4V | 1.9 × 10−7 | −0.09 | ||
MS | Cu-TiN | 6.4 × 10−7 | −0.195 | |||
MS+PIII | Ca+Cu-TiN | 8.5 × 10−8 | −0.232 | |||
MS+PIII | Mg+Cu-TiN | 1.93 × 10−7 | −0.2 | |||
Kuang et al. [271] | 3.5% NaCl | Ti | ||||
MS | TiN | 3.97 | 1.2 × 10−8 | −0.588 | ||
MS+ALD | TiN Al2O3 | 3.99 | 1.1 × 10−9 | −0.578 | ||
MS+PIII+ALD | TiN Al2O3 | 3.99 | 1.3 × 10−9 | −0.45 | ||
Dong et al. [272] | Seawater | Ti6Al4V | 1.9 × 10−5 | −0.181 | ||
MAIP | TiSiCN | 1.1 × 10−6 | −0.185 | |||
MAIP+nitriding | TiSiCN TiN Ti2N | 1.7 × 10−6 | −0.127 | |||
Zhao et al. [273] | PBS | Ti6Al4V | 2.4 × 10−5 | −0.082 | ||
MAIP | TiN | 5.6 | 1.1 × 10−6 | −0.14 | ||
MAIP+PEO | TiN TiO2 | 3 × 10−7 | −0.042 | |||
B. Cheraghali et al. [274] | PBS | Ti | 7.5 × 10−8 | −0.36 | ||
thermal oxidation | oxygen diffusion layers | 2.1 | 2.9 × 10−8 | −0.23 | ||
PEO+ thermal oxidation | TiO2 | 7.5 | 2.4 × 10−8 | −0.03 | ||
Sypniewska et al. [275] | PBS | Ti13Nb13Zr | 3.86 × 10−6 | −0.246 | ||
PEO | TiO2 | 1.93 × 10−5 | −0.320 | |||
PEO+PLD | TiO2 | 2.04 × 10−6 | −0.293 | |||
Çaha et al. [276] | PBS | Ti25Nb5Fe | 2.73 × 10−6 | −0.25 | ||
powder metallurgy | TiN | 2.62 × 10−6 | −0.25 | |||
PEO+powder metallurgy | TiN Ti2O | 1.2 × 10−7 | 0.26 | |||
Xu et al. [277] | 3.5% NaCl | Ti | 3.613 × 10−6 | −0.741 | ||
PEO | TiO2 | 7.588 × 10−7 | −0.409 | |||
PEO+solvothermal method | TiO2 UiO-66(Ce) | 15 | 2.778 × 10−7 | −0.175 | ||
Joo et al. [278] | Ti6Al4V | |||||
PEO | TiO2 | |||||
PEO+sol–gel | TiO2 CaSiO3 | 8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, M.; Li, Y.; Zhang, H. Corrosion Resistance and Plasma Surface Treatment on Titanium and Titanium Alloys: A Review. Coatings 2025, 15, 1180. https://doi.org/10.3390/coatings15101180
Jiang M, Li Y, Zhang H. Corrosion Resistance and Plasma Surface Treatment on Titanium and Titanium Alloys: A Review. Coatings. 2025; 15(10):1180. https://doi.org/10.3390/coatings15101180
Chicago/Turabian StyleJiang, Mingquan, Yang Li, and Hongyang Zhang. 2025. "Corrosion Resistance and Plasma Surface Treatment on Titanium and Titanium Alloys: A Review" Coatings 15, no. 10: 1180. https://doi.org/10.3390/coatings15101180
APA StyleJiang, M., Li, Y., & Zhang, H. (2025). Corrosion Resistance and Plasma Surface Treatment on Titanium and Titanium Alloys: A Review. Coatings, 15(10), 1180. https://doi.org/10.3390/coatings15101180