Development Status of Textured Piezoelectric Ceramics and Preparation Processes
Abstract
:1. Introduction
2. Piezoelectric Material Texturing Process and Main Parameters
2.1. Main Parameters Characterizing the Properties of Piezoelectric Materials
- (1)
- Curie temperature (Tc): When it comes to piezoelectric materials, the Curie temperature (Tc) refers to the temperature at which the ferroelectric phase transforms into the cis-phase. It is generally believed that the higher the Tc, the higher its use or working temperature.
- (2)
- Saturation polarization (Ps): Saturation polarization refers to the maximum polarization intensity that a piezoelectric material can achieve under the maximum electric field. A higher-saturation polarization means that the material has a higher output charge and greater displacement capacity [52]. When the electric field is raised to a certain value, the spontaneous polarization vectors of all the cells rotate in the direction closest to the external electric field, and the interior of the material approximates the state of a single domain. The voltage continues to increase at this point, and the increase in the polarization vector can be entirely attributed to the contribution of the non-ferroelectric part, so that the segment of the electric hysteresis loop in Figure 1a that is close to the maximum polarization vector (Pmax) is linear. Extrapolating this segment to E = 0, the intersection with the y-axis then represents the saturation polarization strength (Ps) [53].
- (3)
- Piezoelectric coefficient (d): The piezoelectric coefficient is the proportionality between the amount of charge generated by a piezoelectric material when it is subjected to a mechanical stress or an electric field excitation and the intensity of the stress or electric field. Usually, d33, d31, d15, etc., are used to indicate the piezoelectric coefficient under different orientations. A higher piezoelectric coefficient indicates that the material is capable of generating a greater charge output or displacement. When pressure T3 is applied along the polarization direction of a piezoelectric material, a surface charge is generated through the inverse piezoelectric effect, where the surface charge density δ3 satisfies the relation.
- (4)
- Electromechanical coupling coefficient (k): As shown in Figure 1b, the electromechanical coupling coefficient is a parameter used to respond to the conversion efficiency of the piezoelectric material in the conversion of mechanical and electrical energy. k’s anisotropic behavior is mainly determined by εT [54], which can be defined as follows:
- (5)
- Dielectric constant (ε): as shown in Figure 1c, the dielectric constant is the degree of polarization of a piezoelectric material under an applied electric field [54]. It reflects the ability of a material to store and release energy in response to an electric field. The dielectric constant usually includes the electrostatic dielectric constant (ε0) and dielectric loss (tanδ). The dielectric properties of ferroelectric materials are directly related to the temperature, and the curve of its dielectric constant ε with the temperature T initially exhibits a rise and then a fall with a peak, and the temperature corresponding to this peak is the value of Tc. At temperatures higher than the Curie temperature Tc, the dielectric constant of ordinary ferroelectric materials generally follows the Curie–Weiss rule:
2.2. Definition, Classification, and Main Processes of Texturing Processes
3. Development and Application of Texturing Processes
3.1. Hot-Pressing Method
3.2. Template Method
4. The Effect of Stencils on the Properties of Textured Ceramics
4.1. BT/ST Stencil Texture Ceramics
4.2. Texturing Ceramics Using PT Stencils
4.3. Textured Ceramics Using NN Templates
5. Template Method and Ion Doping
6. Challenges and Prospects of Ceramic Fabrication Processes
Textured Materials | Lotgering Factor | Tc (°C) | d33 (pC/N) | kp | Refs. | |
---|---|---|---|---|---|---|
KNN KNLN-BZ-BNT | - | - | 319 | 42% | [27] | |
TGG | BCZT | 94% | 120 | - | - | [47] |
TGG | KNN-CZ-xBKH | - | 256 | 550 | 72% | [55] |
HPS | KNN | - | 396 | 151 | - | [60] |
RTGG | NK(NS)— 0.02BZ—0.02BAZ | 97% | 178 | 805 | 0.68 | [62] |
TGG | 0.19PIN–0.445PSN–0.365PT | 99% | 247 | 1090 | 0.83 | [63] |
TGG | 0. 16PYN-0.52PMN-0.32 PT | 99% | 205 | 1087 | 0.9 | [64] |
RTGG | KNN | 96% | 162 | 535 | 0.57 | [65] |
TGG | PIN–PMN–PT | 95% | 225 | 780 | 0.59 | [69] |
RTGG | BT | 84.6% | 126 | 788 | - | [72] |
PIN-PHT-xSb | - | 300 | 706 | 0.68 | [74] | |
PIN-PHT | - | 360 | 490 | 0.56 | ||
PIN-PHT-CuF2 | - | 348 | 488 | 0.60 | ||
PIN-PMN-PT-Mn | - | 209 | 347 | 0.57 | ||
TGG | KNN-BCZT | 74% | 388 | 190 | 0.54 | [82] |
TGG | BT-KNN | 91% | 390 | 180 | - | [84] |
TGG | PMN-PT | 95% | 158 | 770 | - | [85] |
TGG | KNNS-BxBAZ | 274 | 406 | 0.63 | [86] | |
TGG | KNN-XNN | 94% | 240 | 590 | 0.8 | [87] |
TGG | KNN | - | 276 | 380 | 0.54 | [88] |
TGG | BNT–BKT–BT | 73% | - | - | - | [89] |
TGG | 0.42PNN-0.21PZ-0.37PT | - | 167 | 910 | 0.74 | [92] |
TGG | PNN-PZT | 93% | 103 | 1210 | [93] | |
LKNNS-EuNZ-0.03BZ | 98% | - | 331 | 0.53 | [94] | |
NBT-SBT | 91% | - | - | - | [95] | |
PMN-PT | 97% | - | 800 | - | [99] | |
PMN-PT | - | - | 1950 | - | [101] | |
0.42PMN–0.26PIN–0.32PT | - | 180 | 426 | - | [105] | |
RTGG | KNLN-BZ-BNT | 90% | 247 | 319 | 0.48 | [106] |
KNNS-BNBZ | - | - | 505 | - | [107] | |
TGG | KNN-CZ | 89.7% | 192 | 330 | 0.46 | [112] |
KNNTa–BNN | 94% | 360 | 435 | 0.71 | [116] | |
RTGG | KNLN-BZ-BNT-Mn | - | 205 | 292 | 0.47 | [117] |
RTGG | KNLN-BZ-BNT-Mn | 66% | - | 320 | - | [118] |
RTGG | 0.8BNT–0.2BKT | 80% | - | - | - | [119] |
TGG | BCTZ | 99% | - | 728 | - | [121] |
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gao, T.; Liao, Q.; Si, W.; Chu, Y.; Dong, H.; Li, Y.; Liao, Y.; Qin, L. From fundamentals to future challenges for flexible piezoelectric actuators. Cell Rep. Phys. Sci. 2024, 5, 101789. [Google Scholar] [CrossRef]
- Saito, Y.; Takao, H.; Tani, T.; Nonoyama, T.; Takatori, K.; Homma, T.; Nagaya, T.; Nakamura, M. Lead-free piezoceramics. Nature 2004, 432, 84–87. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Qu, W.; Daniels, J.; Wu, H.; Liu, L.; Wu, J.; Wang, M.; Checchia, S.; Yang, S.; Lei, H.; et al. Lead zirconate titanate ceramics with aligned crystallite grains. Science 2023, 380, 87–93. [Google Scholar] [CrossRef] [PubMed]
- Xu, Q.; Tao, Y.; Wang, Z.; Zeng, H.; Yang, J.; Li, Y.; Zhao, S.; Tang, P.; Zhang, J.; Yan, M.; et al. Highly–flexible, high–performance and stretchable piezoelectric sensor based on a hierarchical droplet-shaped ceramics with enhanced damage tolerance. Adv. Mater. 2024, 36, 2311624. [Google Scholar] [CrossRef] [PubMed]
- Xu, Q.; Wang, Z.; Zhong, J.; Yan, M.; Zhao, S.; Gong, J.; Feng, K.; Zhang, J.; Zhou, K.; Xie, J.; et al. Construction of flexible piezoceramic array with ultrahigh piezoelectricity via a hierarchical design strategy. Adv. Funct. Mater. 2023, 33, 2304402. [Google Scholar] [CrossRef]
- Wang, Q.; Bian, L.; Li, K.; Liu, Y.; Yang, Y.; Yang, B.; Cao, W. Achieving ultrahigh electromechanical properties with high TC in PNN-PZT textured ceramics. J. Mater. Sci. Technol. 2023, 175, 258–265. [Google Scholar] [CrossRef]
- Lu, G.; Zhao, Y.; Zhao, R.; Hao, J.; Bai, W.; Li, P.; Li, W.; Zhai, J. High performance (K, Na) NbO3-based textured ceramics for piezoelectric energy harvesting. Ceram. Int. 2024, 50, 54869–54877. [Google Scholar] [CrossRef]
- Tian, F.; Liu, Y.; Tian, W.; Wang, L.; Hao, B.; Yang, S. Research on the Characteristics of High-Performance Textured Ceramic Materials and Their Application in Composite Rod Transducers. Actuators 2024, 13, 437. [Google Scholar] [CrossRef]
- Zhao, L.; Yuan, X.; Zhou, X.; Wang, Q.; Li, J.; Xiong, X.; Zhang, Q.; Chen, C.; Chen, S.; Ju, D.; et al. Three-dimensional honeycomb structured BaTiO3-based piezoelectric ceramics via texturing and vat photopolymerization. Addit. Manuf. 2024, 95, 104542. [Google Scholar] [CrossRef]
- Hu, Z.; Zhang, H.; Zhu, Z.; Zeng, J.; Zhang, D.; Eriksson, M.; Viola, G.; Yan, H. Deciphering the peculiar hysteresis loops of 0.05Pb(Mn1/3Sb2/3)O3–0.95Pb(Zr0.52Ti0.48)O3 piezoelectric ceramics. Acta Mater. 2023, 244, 118563. [Google Scholar] [CrossRef]
- van der Veer, E.; Noheda, B.; Acuautla, M. Piezoelectric properties of PZT by an ethylene glycol-based chemical solution synthesis. J. Sol-Gel Sci. Technol. 2021, 100, 517–525. [Google Scholar] [CrossRef]
- Chen, J.X.; Li, J.W.; Cheng, C.C.; Chiu, C.W. Piezoelectric property enhancement of PZT/Poly (vinylidenefluoride-co-trifluoroethylene) hybrid films for flexible piezoelectric energy harvesters. ACS Omega 2021, 7, 793–803. [Google Scholar] [CrossRef] [PubMed]
- Erturk, O.; Shambaugh, K.; Park, H.-S.; Lee, S.-G.; Bhave, S.A. Self-aligned single-electrode actuation of tangential and wineglass modes using PMN-PT. Microsyst. Nanoeng. 2023, 9, 52. [Google Scholar] [CrossRef]
- Tian, F.; Liu, Y.; Ma, R.; Li, F.; Xu, Z.; Yang, Y. Properties of PMN-PT single crystal piezoelectric material and its application in underwater acoustic transducer. Appl. Acoust. 2021, 175, 107827. [Google Scholar] [CrossRef]
- Lv, P.; Qian, J.; Yang, C.; Liu, T.; Wang, Y.; Wang, D.; Huang, S.; Cheng, X.; Cheng, Z. Flexible all-inorganic Sm-doped PMN-PT film with ultrahigh piezoelectric coefficient for mechanical energy harvesting, motion sensing, and human-machine interaction. Nano Energy 2022, 97, 107182. [Google Scholar] [CrossRef]
- Zu, D.; Zhang, Y.; Li, H.; Wu, N.; OuYang, S. Sintering pressure of SPS-inducing lattice deformation enhances ferroelectric and photoluminescence properties of PLZT ceramics. J. Mater. Res. 2023, 38, 2894–2907. [Google Scholar] [CrossRef]
- Shcheglova, A.I.; Kislova, I.L.; Ilina, T.S.; Kiselev, D.A.; Barabanova, E.V.; Ivanova, A.I. Dielectric and Piezoelectric Properties of PLZT x/40/60 (x = 5; 12) Ceramics. Russ Microelectron 2021, 50, 673–678. [Google Scholar] [CrossRef]
- Luo, W.Q.; Li, D.X.; Li, Z.P.; Shen, Z.Y. Structure and Dielectric Energy Storage Properties of Secondary Phase CaCu3Ti4O12 Modified BSBNT Relaxor Ferroelectric Ceramics. Adv. Ceram. 2023, 44, 28–225. [Google Scholar]
- Wang, Y.; Wang, P.; Liu, L.; Wang, Y.; Zhao, Y.; Tian, W.; Liu, X.; Zhu, F.; Shi, J. Defect Dipole Behaviors on the Strain Performances of Bismuth Sodium Titanate-Based Lead-Free Piezoceramics. Materials 2023, 16, 4008. [Google Scholar] [CrossRef] [PubMed]
- Viola, G.; Tian, Y.; Yu, C.; Tan, Y.; Koval, V.; Wei, X.; Choy, K.L.; Yan, H. Electric field-induced transformations in bismuth sodium titanate-based materials. Prog. Mater. Sci. 2021, 122, 100837. [Google Scholar] [CrossRef]
- Zhou, X.; Xue, G.; Luo, H.; Bowen, C.R.; Zhang, D. Phase Structure and Properties of Sodium Bismuth Titanate Lead-free Piezoelectric Ceramics. Prog. Mater. Sci. 2021, 122, 100836. [Google Scholar] [CrossRef]
- Dinh, T.H.; Han, H.S.; Tran, V.D.N.; Le Van, V.; Lee, J.S. Thermally-Stable High EFIS Properties of Ternary Lead-Free BNT-BKT-BZ Piezoelectric Ceramics. J. Electron. Mater. 2023, 52, 2977–2985. [Google Scholar] [CrossRef]
- Liu, Y.; Khanbareh, H.; Halim, M.A.; Feeney, A.; Zhang, X.; Heidari, H.; Ghannam, R. Piezoelectric energy harvesting for self-powered wearable upper limb applications. Nano Sel. 2021, 2, 1459–1479. [Google Scholar] [CrossRef]
- Gao, X.; Cheng, Z.; Chen, Z.; Liu, Y.; Meng, X.; Zhang, X.; Wang, J.; Guo, Q.; Li, B.; Sun, H.; et al. The mechanism for the enhanced piezoelectricity in multi-elements doped (K,Na) NbO3 ceramics. Nat. Commun. 2021, 12, 881. [Google Scholar] [CrossRef]
- Xu, L.; Lin, J.; Yang, Y.; Zhao, Z.; Shi, X.; Ge, G.; Qian, J.; Shi, C.; Li, G.; Wang, S.; et al. Ultrahigh thermal stability and piezoelectricity of lead-free KNN-based texture piezoceramics. Nat. Commun. 2024, 15, 9018. [Google Scholar] [CrossRef]
- Wang, C.; Hou, L.; Xun, Y. Study on the Structure and Properties of (1−x)KNNS―xBFANZ Lead-free Piezoelectric Ceramics. Adv. Ceram. 2023, 44, 490–496. [Google Scholar]
- Liu, B.; Wang, Y.; Fan, N.; He, Y.; Yang, H.; Liu, S. Piezoelectric generator based on centrosymmetric CdO film with (111) orientation and its atomic mechanism. Cell Rep. Phys. Sci. 2023, 4, 101360. [Google Scholar] [CrossRef]
- Yin, J.; Shi, X.; Tao, H.; Tan, Z.; Lv, X.; Ding, X.; Sun, J.; Zhang, Y.; Zhang, X.; Yao, K.; et al. Deciphering the atomic-scale structural origin for large dynamic electromechanical response in lead-free Bi0.5Na0.5TiO3-based relaxor ferroelectrics. Nat. Commun. 2022, 13, 6333. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Yu, X.; Jiao, J.; Song, X.; Cheng, X.; Liu, M.; Wang, L.L.; Zheng, J.; Lv, W.; Zhong, G.; et al. Building cross-phase ion transport channels between ceramic and polymer for highly conductive composite solid-state electrolyte. Cell Rep. Phys. Sci. 2023, 4, 101382. [Google Scholar] [CrossRef]
- Liu, K.; He, J.; Li, T.; Hu, J.; Du, Y.; Shi, Y.; Yan, C.; Chen, Z.; Huang, S.; Sun, H. Fabrication of Ceramic-polymer Piezo-composites with Triply Periodic Minimal Interfaces via Digital Light Processing. Chin. J. Mech. Eng. Addit. Manuf. Front. 2023, 2, 100104. [Google Scholar] [CrossRef]
- Wang, B.; Wang, J.; Li, J.; Yang, M.; Huang, M.; Ma, T.; Tian, Y.; Wu, F. Structure and electrical properties of La2O3-doped (K,Na,Li)(Nb,Ta)O3-(Bi,Na)TiO3 ceramics. J. Adv. Dielectr. 2023, 13, 2350010. [Google Scholar] [CrossRef]
- Zhao, C.; Huang, Y.; Wu, J. Multifunctional barium titanate ceramics via chemical modification tuning phase structure. InfoMat 2020, 2, 1163–1190. [Google Scholar] [CrossRef]
- Gao, L.; Liu, Z.; Ren, P.; Liang, R.; Li, T.; Guo, K.; Xie, B.; Lu, J.; Mao, P.; Tian, J.; et al. Inhibiting oxygen vacancies and twisting NbO6 octahedron in erbium modified KNN-based multifunctional ceramics. J. Mater. 2023, 10, 179–189. [Google Scholar] [CrossRef]
- Mi, L.; Wu, D.; Zhou, H.; Chen, Y. Study on Sintering Characteristics of Ce-doped PZN-PZT Ternary Piezoelectric Ceramics. Adv. Ceram. 2023, 44, 57–66. [Google Scholar]
- Li, Y.; Zhou, Z.; Liang, R.; Gao, B.; Zhou, Z.; Dong, X. A simple Bi3+ self-doping strategy constructing pseudo-tetragonal phase boundary to enhance electrical properties in CaBi2Nb2O9 high-temperature piezoceramics. J. Eur. Ceram. Soc. 2022, 42, 2772–2780. [Google Scholar] [CrossRef]
- Zhai, Y.; Qi, X.; Tian, G.; Wang, J.; Yu, F.; Gai, Z.; Du, J.; Su, W.; Guo, S.; Zheng, L. Improved energy-harvesting performance of (k, na)nbo3-based ceramics through the synergistic effect of texture and defect engineering. J. Eur. Ceram. Soc. 2025, 45, 116984. [Google Scholar] [CrossRef]
- Zhan, L.; Xia, Y.; Zhang, X.; Liu, Y.; Liu, S. Effects of Stereolithography Process Parameters on the Curing Properties of Si3N4 Ceramic Slurries. Chin. J. Mech. Eng. Addit. Manuf. Front. 2023, 2, 100095. [Google Scholar] [CrossRef]
- Peng, G.; Chen, C.; Zhang, J.; Zheng, D.; Hu, S.; Zhang, H. Effects of PNN/PZT ratios on phase structure, electric properties and relaxation behavior of PZN–PNN–PZT ceramics. J. Mater. Sci. Mater. Electron. 2016, 27, 3145–3151. [Google Scholar] [CrossRef]
- Cheng, M.; Zhao, M.; Zhang, S.; Yan, Y.; Li, Z.; Wang, P.; Murakami, R.-I.; Zhang, D. Improved piezoelectricity of lead-based PNN-PIN-PT ternary ceramics via polymorphic nanodomain modulation. J. Eur. Ceram. Soc. 2023, 43, 5231–5240. [Google Scholar] [CrossRef]
- Hou, W.; Liao, Q.; Xie, S.; Song, Y.; Qin, L. Prospects and Challenges of Flexible Stretchable Electrodes for Electronics. Coatings 2022, 12, 558. [Google Scholar] [CrossRef]
- Cao, S.; Zou, Q.; Wang, Q.; Wang, W.; Chen, L.; Liu, T.; Xu, J.; Zhang, Q.; Gao, F. KSr2Nb5O15-based composite ceramics: The atomic-scale anisotropic origin of photochromism and influences of second phase concentrations on optical properties. Ceram. Int. 2023, 49, 18470–18482. [Google Scholar] [CrossRef]
- Li, X.; Yao, M.; Lin, W.; Lin, J.; Yao, X. Morphological evolution of plate-like B-site complex perovskite Pb(ZrxTi1−x)O3 microcrystals. J. Solid State Chem. 2023, 326, 124236. [Google Scholar] [CrossRef]
- Chen, Q.; Cao, S.; Song, W.; Xie, Y.; Yan, Z.; Xu, J.; Gao, F. Comparing investigation of the anisotropic thermoelectric properties of textured KSr2Nb5O15 ceramics. J. Phys. Chem. Solids 2023, 175, 111204. [Google Scholar] [CrossRef]
- Wang, J.; Wang, S.; Li, X.; Li, L.; Liu, Z.; Zhang, J.; Wang, Y. High piezoelectricity and low strain hysteresis in PMN–PT-based piezoelectric ceramics. J. Adv. Ceram. 2023, 12, 792–802. [Google Scholar] [CrossRef]
- Haugen, A.B.; Ringgaard, E.; Levassort, F. Textured, lead-free piezoelectric ceramics with high figure of merit for energy harvesting. J. Phys. Mater. 2021, 4, 044002. [Google Scholar] [CrossRef]
- Fan, P.; Liu, K.; Ma, W.; Tan, H.; Zhang, Q.; Zhang, L.; Zhou, C.; Salamon, D.; Zhang, S.-T.; Zhang, Y.; et al. Progress and perspective of high strain NBT-based lead-free piezoceramics and multilayer actuators. J. Mater. 2021, 7, 508–544. [Google Scholar] [CrossRef]
- Kou, Q.; Yang, B.; Sun, Y.; Yang, S.; Liu, L.; Xie, H.; Chang, Y.; Zhang, S.; Li, F. Tetragonal (Ba, Ca) (Zr, Ti)O3 textured ceramics with enhanced piezoelectric response and superior temperature stability. J. Mater. 2022, 8, 366–374. [Google Scholar] [CrossRef]
- Liu, L.; Jiang, X.; Rui, L.; Guo, Z.; Hou, Z. A Duplex Grain Structure of Dense (K, Na) NbO3 Ceramics Constructed by Using Microcrystalline as Seed. J. Wuhan Univ. Technol.-Mater. Sci. Ed. 2022, 37, 385–392. [Google Scholar] [CrossRef]
- Yu, F.; Lu, Q.; Zhou, P.; Zhao, C.; Wu, X.; Lin, C.; Gao, M.; Lin, T. Microstructure and photoluminescence properties of Er3+/LaBiO3 co-modified (K0.5Na0.5) NbO3 transparent textured ceramics via tape-casting method. Mater. Sci. Eng. B 2022, 286, 116073. [Google Scholar] [CrossRef]
- Jia, P.; Zheng, Z.; Li, Y.; Li, Z.; Liu, T.; Wang, Y. The achieving enhanced piezoelectric performance of KNN-based ceramics: Decisive role of multi-phase coexistence induced by lattice distortion. J. Alloy. Compd. 2023, 930, 167416. [Google Scholar] [CrossRef]
- Leng, H.; Yan, Y.; Li, X.; Karan, S.K.; Fanton, M.; Priya, S. High-power piezoelectric behavior of acceptor-doped <001> and<111> textured piezoelectric ceramics. J. Mater. Chem. C 2023, 11, 2229–2240. [Google Scholar]
- Liao, Q.; Hou, W.; Liao, K.; Chen, L.; Song, Y.; Gao, G.; Qin, L. Solid-phase sintering and vapor-liquid-solid growth of BP@MgO quantum dot crystals with a high piezoelectric response. J. Adv. Ceram. 2022, 11, 1725–1734. [Google Scholar] [CrossRef]
- Smolenskii, G.; Agranovskaya, A. Dielectric polarization and losses of some complex compounds. Zhur. Tekh. Fiz. 1958, 28, 4294595. [Google Scholar]
- Yan, Y.; Geng, L.D.; Liu, H.; Leng, H.; Li, X.; Wang, Y.U.; Priya, S. Near-ideal electromechanical coupling in textured piezoelectric ceramics. Nat. Commun. 2022, 13, 3565. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Huan, Y.; Yang, W.; Zhu, F.; Li, X.; Zhang, X.; Shen, B.; Zhai, J. High-performance potassium-sodium niobate lead-free piezoelectric ceramics based on polymorphic phase boundary and crystallographic texture. Acta Mater. 2019, 165, 486–495. [Google Scholar] [CrossRef]
- Zhou, X.; Yang, H.; Xue, G.; Luo, H.; Zhang, D. Optimized strain performance in <001>-textured Bi0.5Na0.5TiO3-based ceramics with ergodic relaxor state and core-shell microstructure. J. Adv. Ceram. 2022, 11, 17. [Google Scholar] [CrossRef]
- Li, Y.; Liao, Q.; Hou, W.; Qin, L. Silver-Based Surface Plasmon Sensors: Fabrication and Applications. Int. J. Mol. Sci. 2023, 24, 4142. [Google Scholar] [CrossRef]
- Jia, Y.; Fan, H.; Zhang, A.; Wang, H.; Lei, L.; Quan, Q.; Dong, G.; Wang, W.; Li, Q. Giant electro-induced strain in lead-free relaxor ferroelectrics via defect engineering. Eur. Ceram. Soc. 2023, 43, 947. [Google Scholar] [CrossRef]
- Feng, W.; Luo, B.; Bian, S.; Tian, E.; Zhang, Z.; Kursumovic, A.; MacManus-Driscoll, J.L.; Wang, X.; Li, L. Heterostrain-enabled ultrahigh electrostrain in lead-free piezoelectric. Nat. Commun. 2022, 13, 5086. [Google Scholar] [CrossRef]
- Liu, X.; Chen, X.M.; Liu, M.D.; Lan, J.J.; Zhan, X.; Lu, J.B.; Jing, H.M. Improved dielectric and ferroelectric properties of fine-grained K0.5Na0.5NbO3 ceramics via hot-press sintering. Ceram. Int. 2022, 48, 11615–11622. [Google Scholar] [CrossRef]
- Dong, A.; Liu, R.; Tian, Z.; Peng, F.; Zhao, R.; Su, X.; Tang, R. Effect of pre-sintering particle size on the microstructure and magnetic properties of two-step hot-press prepared BaFe12O19 thick films. J. Alloy. Compd. 2023, 967, 171683. [Google Scholar] [CrossRef]
- Go, S.H.; Kim, H.; Kim, D.S.; Eum, J.M.; Chae, S.J.; Kim, E.J.; Nahm, S. Improvement of piezoelectricity of (Na, K) Nb-based lead-free piezoceramics using [001]-texturing for piezoelectric energy harvesters and actuators. J. Eur. Ceram. Soc. 2022, 42, 6478–6492. [Google Scholar] [CrossRef]
- Yang, S.; Li, J.; Liu, Y.; Wang, M.; Qiao, L.; Gao, X.; Chang, Y.; Du, H.; Xu, Z.; Zhang, S.; et al. Textured ferroelectric ceramics with high electromechanical coupling factors over a broad temperature range. Nat. Commun. 2021, 12, 1414. [Google Scholar] [CrossRef]
- Chang, Y.; Wu, J.; Liu, Z.; Sun, E.; Liu, L.; Kou, Q.; Li, F.; Yang, B.; Cao, W. Grain-oriented ferroelectric ceramics with single-crystal- ike piezoelectric properties and low texture temperature. ACS Appl. Mater. Inter. 2020, 12, 38415–38424. [Google Scholar] [CrossRef]
- Chae, S.J.; Na, J.W.; Kim, D.S.; Kim, S.W.; Go, S.H.; Kim, H.; Kim, E.J.; Eum, J.M.; Nahm, S. Application of [001]-textured (K, Na)(Nb, Sb)O3-CaZrO3 thick films to piezoelectric energy harvesters. Ceram. Int. 2022, 48, 18401–18414. [Google Scholar] [CrossRef]
- Makiya, A.; Kusano, D.; Tanaka, S. Particle Oriented bismuth titanate ceramics made in hugh magnetic field. J. Ceram. Soc. Jpn. 2003, 111, 702–704. [Google Scholar] [CrossRef]
- Kimuratyamaguchi, T. Fused salt synthesis of Bi4Ti312. Ceramint 1983, 9, 13–17. [Google Scholar]
- Goyal, A.; Feenstra, R.; List, F.A.; Paranthaman, M.; Lee, D.F.; Kroeger, D.M.; Beach, D.B.; Morrell, J.S.; Chirayil, T.G.; Verebelyi, D.T.; et al. Using RABiTS to fabricate high-temperature superconducting wire. JOM 1999, 51, 19–23. [Google Scholar] [CrossRef]
- Wei, D.-D.; Yuan, Q.-B.; Zhang, G.-Q.; Wang, H. Templated grain growth and piezoelectric properties of <001>-textured PIN–PMN–PT ceramics. J. Mater. Res. 2015, 30, 2144–2150. [Google Scholar]
- Chen, H.B.; Xu, J.B.; Zhai, J.W. Fabrication and Piezoelectric Property of Textured Bismuth Layered Structure Ceramics by Hot Pressing Technique. Key Eng. Mater. 2013, 547, 11–18. [Google Scholar] [CrossRef]
- Moriana, A.D.; Zhang, S. Lead-free textured piezoceramics using tape casting: A review. J. Mater. 2018, 4, 277–303. [Google Scholar] [CrossRef]
- Khanal, G.P.; Fujii, I.; Ueno, S.; Wada, S. Phase evolution and, rientation mechanism in RTGG-processed BaTiO3 ceramics with electrical properties. J. Am. Ceram. Soc. 2021, 104, 4649–4658. [Google Scholar] [CrossRef]
- Li, T.; Liu, C.; Shi, P.; Liu, X.; Kang, R.; Long, C.; Wu, M.; Cheng, S.; Mi, S.; Xia, Y.; et al. High-Performance Strain of Lead-Free Relaxor-Ferroelectric Piezoceramics by the Morphotropic Phase Boundary Modification. Adv. Funct. Mater. 2022, 32, 2202307. [Google Scholar] [CrossRef]
- Shi, H.; Zhao, M.; Zhang, D.; Li, Z.; Zhang, M.; Wang, J.; Jin, L.; Yan, Y. Effect of Sb-induced oxygen octahedral distortion on piezoelectric performance and thermal stability of Pb(In,Nb)O3-Pb(Hf,Ti) O3 ceramics. J. Mater. Sci. Technol. 2023, 161, 101–110. [Google Scholar] [CrossRef]
- Koblischka-Veneva, A.; Koblischka, M.R.; Simon, P.; Mücklich, F.; Murakami, M. Electron backscatter diffraction study of polycrystalline YBa2Cu3O7−δ ceramics. Phys. C 2002, 382, 311–322. [Google Scholar] [CrossRef]
- Zhao, Z.H.; Li, X.L.; Dai, Y.J.; Ye, M.Y.; Ji, H.M. Texture development in Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free ceramics prepared by reactive template grain growth with different Ba and Ca sources. Ceram. Int. 2016, 42, 18756–18763. [Google Scholar] [CrossRef]
- Jaeger, R.E.; Egerton, L. Hot Pressing of Potassium-Sodium Niobates. J. Am. Ceram. Soc. 1962, 45, 209–213. [Google Scholar] [CrossRef]
- Liu, Y.X.; Thong, H.C.; Cheng, Y.Y.S.; Li, J.W.; Wang, K. Defect-mediated domain-wall motion and enhanced electric-field-induced strain in hot-pressed K0.5Na0.5NbO3 lead-free piezoelectric ceramics. J. Appl. Phys. 2021, 129, 024102. [Google Scholar] [CrossRef]
- Yu, Z.D.; Chen, X.M.; Su, Y.L.; Lian, H.L.; Lu, J.B.; Zhou, J.P.; Liu, P. Hot-press sintering K0.5Na0.5NbO3–0.5 mol% Al2O3 ceramics with enhanced ferroelectric and piezoelectric properties. J. Mater. Sci. 2019, 54, 13457–13466. [Google Scholar] [CrossRef]
- Li, Z.; Sun, H.; Liu, X.; Sui, H.; Guo, H. High performance lead-free Na0.5K0.5NbO3 piezoelectric ceramics obtained via oscillatory hot-pressing. Ceram. Int. 2020, 46, 11617–11621. [Google Scholar] [CrossRef]
- Liu, K.; Ma, W.; Liu, F.; Tan, H.; Dou, Z.; Samart, C.; Kongparakul, S.; Zhang, G.; Jiang, S.; Fan, P.; et al. Boosting electric-field-induced strain of dual templates-textured (Na1/2Bi1/2)TiO3-based lead-free piezoceramics by polarization coupling. J. Eur. Ceram. Soc. 2022, 42, 6466–6477. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, Q.; Cai, W.; Chen, G.; Li, X.; Gao, R.; Deng, X.; Fu, C. Achieving enhanced ferroelectricity and piezoelectric responses in <0 0 1>-textured KNN-BCZT ceramics with BaTiO3 microplates as template. Mater. Lett. 2023, 351, 135098. [Google Scholar]
- Shi, W.; Zhang, H.; Liu, Y.; Bian, L.; Bi, W.; Deng, Y.; Yang, B. Improvement on Qm in high-power piezoelectric ceramics through [111] c texture engineering. J. Mater. Sci. Technol. 2025, 216, 260–268. [Google Scholar] [CrossRef]
- Park, S.; Jang, J.; Ahn, C.-W.; Hahn, B.-D.; Yoon, W.-H.; Lee, J.W.; Choi, J.-J.; Min, Y. Buffered template strategy for improving texture quality and piezoelectric properties of heterogeneous templated grain growth (K,Na) NbO3-based ceramics through interface engineering. J. Eur. Ceram. Soc. 2023, 43, 1932–1940. [Google Scholar] [CrossRef]
- Gao, S.; Li, P.; Qu, J.; Sun, M.; Hao, J.; Fu, P.; Pan, Z.; Zhai, J.; Li, W. Temperature-insensitive KNN-based ceramics by elevating O-T phase transition temperature and crystal texture. J. Mater. 2023, 9, 261–268. [Google Scholar] [CrossRef]
- Zheng, T.; Wu, H.; Yuan, Y.; Lv, X.; Li, Q.; Men, T.; Zhao, C.; Xiao, D.; Wu, J.; Wang, K.; et al. The structural origin of enhanced piezoelectric performance and stability in lead free ceramics. Energy Environ. Sci. 2017, 10, 528–537. [Google Scholar] [CrossRef]
- Purusothaman, Y.; Leng, H.; Nanda, A.; Levine, I.; Priya, S. Textured Lead-Free Piezoelectric Ceramics for Flexible Energy Harvesters. ACS Appl. Mater. Interfaces 2023, 15, 6584–6593. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Li, J.F.; Zhao, L.; Zhang, Y.; Gao, J.; Sun, W.; Wang, K.; Li, L. Niobate-based lead-freepiezoceramics: Diffused phase transition boundary leading to temperatureinsensitive high piezoelectric voltage coefficient. J. Mater. Chem. C 2018, 6, 1116–1125. [Google Scholar] [CrossRef]
- Hu, D.; Pan, Z.; Zhang, X.; Ye, H.; He, Z.; Wang, M.; Xing, S.; Zhai, J.; Fu, Q.; Liu, J. Greatly enhanced discharge energy density and efficiency of novel relaxation ferroelectric BNT–BKT-based ceramics. J. Mater. Chem. C 2020, 8, 591–601. [Google Scholar] [CrossRef]
- Zhao, Z.H.; Ye, M.Y.; Ji, H.M.; Li, X.L.; Zhang, X.; Dai, Y. Enhanced piezoelectric properties and strain response in 〈001〉 textured BNT-BKT-BT ceramics. J. Mater. Des. 2018, 137, 184–191. [Google Scholar] [CrossRef]
- Qiu, R.; Guo, F.; Wu, J.; Bai, W.; Chen, Y.; Zhou, H.; Long, W.; Li, X.; Fang, P.; Dai, Z.; et al. Enhanced grain orientation degree and electrical properties in PSN-PMN-PT textured ceramics under the effect of sintering aids. J. Mater. Sci. Technol. 2024, 199, 114–124. [Google Scholar] [CrossRef]
- Bian, L.; Kou, Q.; Liu, L.; Zheng, H.; Wang, N.; Qi, X.; Yang, B.; Cao, W. Enhancing the Temperature Stability of 0.42PNN-0.21PZ-0.37PT Ceramics through Texture Engineering. ACS Appl. Mater. Interfaces 2022, 14, 3076–3083. [Google Scholar] [CrossRef] [PubMed]
- Bian, L.; Qi, X.; Li, K.; Yu, Y.; Liu, L.; Chang, Y.; Cao, W.; Dong, S. High-performance [001] c-textured PNN-PZT relaxor ferroelectric ceramics for electromechanical coupling devices. Adv. Funct. Mater. 2020, 30, 2001846. [Google Scholar] [CrossRef]
- Liu, Q.; Pan, E.; Liu, F.; Li, J. (K, Na) NbO3-based lead-free ceramics with enhanced temperature-stable piezoelectricity and efficient red luminescence. J. Adv. Ceram. 2023, 12, 373–385. [Google Scholar] [CrossRef]
- Li, J.; Shen, Z.; Chen, X.; Yang, S.; Zhou, W.; Wang, M.; Wang, L.; Kou, Q.; Liu, Y.; Li, Q.; et al. Grain-orientation-engineered multilayer ceramic capacitors for energy storage applications. Nat. Mater. 2020, 19, 999–1005. [Google Scholar] [CrossRef] [PubMed]
- Negishi, Y.; Kimura, T. Approaches for preparing <1 1 1>-textured Bi0.5Na0.5TiO3-based ceramics by hetero-templated grain growth. Ceram. Int. 2012, 38, 5103–5112. [Google Scholar]
- Badole, M.; Vasavan, H.N.; Saxena, S.; Das, A.K.; Srihari, V.; Kumar, S. Piezoelectric properties and structural evolution in La- and Al-modified K0.5Bi0.5Tio3 ceramics. J. Alloys Compd. 2023, 944, 169204. [Google Scholar] [CrossRef]
- Jiang, T.; Yang, W.; Deng, W.; Yu, Z.; Wen, W. Improvement of microstructure and dielectric properties of Zn1. 8SiO3. 8 ceramics by doping with rare earth elements (La, Pr, Nd, Sm). J. Alloys Compd. 2025, 1010, 177679. [Google Scholar] [CrossRef]
- Jiang, X.; Zheng, F.; Tian, X.; Liu, Y.; Yang, T.; Cheng, M.; Fang, Z.; Qin, Y.; Ye, W.; Zhang, Y. Investigation on the fabrication and properties of Ce-doped PMN-PT translucent piezoelectric ceramics. J. Mater. Sci. Mater. Electron. 2022, 33, 468–478. [Google Scholar] [CrossRef]
- Moriana, A.D.; Zhang, S. Enhancing Electromechanical Properties of Pb(Sc1/2Nb1/2)O3-PbZrO3-PbTiO3 Piezoelectric Ceramics via Templated Grain Growth. Adv. Electron. Mater. 2023, 8, 8. [Google Scholar] [CrossRef]
- Yan, Y.; Geng, L.D.; Zhu, L.F.; Leng, H.; Li, X.; Liu, H.; Lin, D.; Wang, K.; Wang, Y.U.; Priya, S. Ultrahigh piezoelectric performance through synergistic compositional and microstructural engineering. Adv. Sci. 2022, 9, 2105715. [Google Scholar] [CrossRef]
- Li, K.; Sun, E.; Zhang, Y.; Song, Z.; Qi, X.; Sun, Y.; Li, J.; Yang, B.; Liu, J.; Cao, W. High piezoelectricity of Eu3+-doped Pb(Mg1/3Nb2/3)O3-0.25PbTiO3 transparent ceramics. J. Mater. Chem. C 2021, 9, 2426–2436. [Google Scholar] [CrossRef]
- Li, F.; Lin, D.; Chen, Z.; Cheng, Z.; Wang, J.; Li, C.; Xu, Z.; Huang, Q.; Liao, X.; Chen, L.Q.; et al. Ultrahigh piezoelectricity in ferroelectric ceramics by design. Nat. Mater. 2018, 17, 349. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Cabral, M.J.; Xu, B.; Cheng, Z.; Dickey, E.C.; LeBeau, J.M.; Wang, J.; Luo, J.; Taylor, S.; Hackenberger, W.; et al. Giant Piezoelectricity of Sm-Doped Pb(Mg1/3Nb2/3)O3-PbTiO3 Single Crystals. Science 2019, 364, 264–268. [Google Scholar] [CrossRef]
- Gowthami, S.; Babu, G.A.; Manikandan, C.; Varadarajan, E.; Sarguna, R.M. Improved piezoelectric and electric field-induced strain properties in Eu3+ modified 0.42PMN–0.26PIN–0.32PT ceramics. Appl. Phys. A 2023, 129, 239. [Google Scholar] [CrossRef]
- Quan, Y.; Ren, W.; Niu, G.; Wang, L.; Zhao, J.Y.; Zhang, N.; Liu, M.; Ye, Z.-G.; Liu, L.; Karakit, T. Large Piezoelectric Strain with Superior Thermal Stability and Excellent Fatigue Resistance of Lead-Free Potassium Sodium Niobate-Based Grain Orientation-Controlled Ceramics. ACS Appl. Mater. Interfaces 2018, 10, 10220–10226. [Google Scholar] [CrossRef]
- Lv, X.; Wu, J.; Zhang, X.-X. Tuning the Covalency of A-O Bonds to Improve the Performance of KNN-Based Ceramics with Multiphase Coexistence. ACS Appl. Mater. Interfaces 2020, 12, 49795–49804. [Google Scholar] [CrossRef] [PubMed]
- Feng, W.; Cen, Z.; Liang, S.; Luo, B.; Zhang, Y.; Zhen, Y.; Wang, X.; Li, L. Enhanced temperature stability of electric-field-induced strain in KNN-based ceramics. J. Alloys Compd. 2019, 786, 498–506. [Google Scholar] [CrossRef]
- Li, R.; Zeng, Y.; Sun, X.X.; Li, C.; Li, R.; Zheng, T.; Jiang, L.; Wu, J. Multidimensional synergy-induced high piezoelectricity and reliability KNN piezoceramics for high-frequency ultrasonic transducers. Sci. China Mater. 2023, 66, 686–695. [Google Scholar] [CrossRef]
- Wang, B.; Huangfu, G.; Zheng, Z.; Guo, Y. Giant Electric Field-Induced Strain with High Temperature-Stability in Textured KNN-Based Piezoceramics for Actuator Applications. Adv. Funct. Mater. 2023, 33, 2214643. [Google Scholar] [CrossRef]
- Huangfu, G.; Zeng, K.; Wang, B.; Wang, J.; Fu, Z.; Xu, F.; Zhang, S.; Luo, H.; Viehland, D.; Guo, Y. Giant electric field–induced strain in lead-free piezoceramics. Science 2022, 378, 1125–1130. [Google Scholar] [CrossRef]
- Jiang, L.; Yang, P.; Fan, Y.; Zeng, S.; Wang, Z.; Pan, Z.; He, Y.; Xiong, J.; Zhang, X.; Hu, Y.; et al. Ultrahigh Piezoelectric Coefficients of Li-doped (K,Na) NbO3 Nanorod Arrays with Manipulated O-T Phase Boundary: Towards Energy Harvesting and Self-Powered Human Movement Monitoring. Nano Energy 2021, 86, 106072. [Google Scholar] [CrossRef]
- Li, P.; Zhai, J.; Shen, B.; Zhang, S.; Li, X.; Zhu, F.; Zhang, X. Ultrahigh Piezoelectric Properties in Textured (K,Na) NbO3-Based Lead-Free Ceramics. Adv. Mater. 2018, 30, 1705171. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Shi, X.; Xue, H.; Zhang, N.; Zheng, T.; Huang, H.; Zhu, J.; Wu, J. Electric-Field-Insensitive Temperature Stability of Strain in KNN Multilayer Composite Ceramics. J.ACS Appl. Mater. Interfaces 2022, 14, 26949–26957. [Google Scholar] [CrossRef]
- Lu, G.; Zhao, Y.; Zhao, J.; Hao, J.; Fu, P.; Bai, W.; Li, P.; Li, W.; Zhai, J. Composition-driven phase transition and structural origin of high piezoresponse in KNN-based ceramics. Ceram. Int. 2024, 50, 30647–30657. [Google Scholar] [CrossRef]
- Lin, J.; Cao, Y.; Zhu, K.; Yan, F.; Shi, C.; Bai, H.; Ge, G.; Yang, J.; Yang, W.; Shi, Y.; et al. Ultrahigh energy harvesting properties in temperature-insensitive eco-friendly high-performance KNN-based textured ceramics. J. Mater. Chem. A 2022, 10, 7978–7988. [Google Scholar] [CrossRef]
- Xu, K.; Li, J.; Lv, X.; Wu, J.; Zhang, X.; Xiao, D.; Zhu, J. Superior piezoelectric properties in potassium–sodium niobate lead-free ceramics. Adv. Mater. 2016, 28, 8519–8523. [Google Scholar] [CrossRef]
- Wu, J.; Xiao, D.; Zhu, J. Potassium–sodium niobate lead-free piezoelectric materials: Past, present, and future of phase boundaries. Chem. Rev. 2015, 115, 2559–2595. [Google Scholar] [CrossRef]
- Lai, L.; Zhao, Z.; Tian, S.; Ou, B.; Liang, G.; Li, B.; Dai, Y. Ultrahigh electrostrain with excellent fatigue resistance in textured Nb5+-doped(Bi0.5Na0.5)TiO3-based piezoceramics. ACS 2023, 12, 11. [Google Scholar]
- Zhao, Z.; Lv, Y.; Dai, Y.; Zhang, S. Ultrahigh electro-strain in acceptor-doped KNN lead-free piezoelectric ceramics via defect engineering. Acta Mater. 2020, 200, 35–41. [Google Scholar] [CrossRef]
- Liu, Y.; Chang, Y.; Sun, E.; Li, F.; Zhang, S.; Yang, B.; Sun, Y.; Wu, J.; Cao, W. Significantly Enhanced Energy Harvesting Performance and Superior Fatigue-Resistant Behavior in [001]c-Textured BaTiO3 Based Lead-Free Piezoceramics. ACS Appl. Mater. Interfaces 2018, 10, 31488–31497. [Google Scholar] [CrossRef]
- Zhang, L.; Pu, Y.; Chen, M. Influence of BaZrO3 additive on the energy-storage properties of 0.775Na0.5Bi0.5TiO3-0.225BaSnO3 relaxor ferroelectrics. J. Alloy. Compd. 2019, 775, 342–347. [Google Scholar] [CrossRef]
- Chen, W.; Wang, L.; Ren, W.; Zhao, J.; Wang, Z.; Quan, Y.; Zhuang, J. Effect of BaZrO3 amounts on the domain structure and electrical properties of lead-free piezoelectric KNN-based films. Mater. Sci. Eng. B 2022, 276, 115552. [Google Scholar] [CrossRef]
- Hussain, A.; Maqbool, A.; Malik, R.A.; Ahmed, T.; Lee, S.; Kim, M.H. Texture performance of lead-free Bi1/2Na1/2TiO3–BaZrO3 ceramics. Ceram. Int. 2023, 49, 10073–10082. [Google Scholar] [CrossRef]
- Cha, H.A.; Kim, Y.K.; Jeon, J.H. Mechanism of Bi0.5Na0.5TiO3 and Bi4.5Na0.5Ti4O15 template synthesis during topochemical microcrystal conversion and texturing of Bi0.5(Na0.8K0.2)(0.5)TiO3 piezoelectric ceramics. J. Eur. Ceram. Soc. 2017, 37, 967–974. [Google Scholar] [CrossRef]
- Gio, P.D. Enhancement in dielectric, ferroelectric, and piezoelectric properties of BaTiO3-modified Bi0.5 (Na0.4K0.1) TiO3 lead-free ceramics. J. Alloys Compd. 2020, 817, 152790. [Google Scholar]
Samples | εr | tanδ (%) | Tc (°C) | d33 (pC N−1) | kp (%) |
---|---|---|---|---|---|
T-3BT | 2120 ± 60 | 0.8 | 261 | 850 ± 30 | 82.2 ± 0.7 |
T-5BT | 2310 ± 90 | 1.2 | 247 | 1090 ± 50 | 83.4 ± 0.7 |
T-7BT | 2250 ± 110 | 1.3 | 241 | 1060 ± 50 | 80.5 ± 0.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shen, N.; Liao, Q.; Liao, Y.; Li, R.; Zhang, Y.; Song, S.; Song, Y.; Zhu, C.; Qin, L. Development Status of Textured Piezoelectric Ceramics and Preparation Processes. Coatings 2025, 15, 51. https://doi.org/10.3390/coatings15010051
Shen N, Liao Q, Liao Y, Li R, Zhang Y, Song S, Song Y, Zhu C, Qin L. Development Status of Textured Piezoelectric Ceramics and Preparation Processes. Coatings. 2025; 15(1):51. https://doi.org/10.3390/coatings15010051
Chicago/Turabian StyleShen, Nianyi, Qingwei Liao, Yaoyao Liao, Ruifeng Li, Yushan Zhang, Shiliang Song, Ying Song, Chengzhi Zhu, and Lei Qin. 2025. "Development Status of Textured Piezoelectric Ceramics and Preparation Processes" Coatings 15, no. 1: 51. https://doi.org/10.3390/coatings15010051
APA StyleShen, N., Liao, Q., Liao, Y., Li, R., Zhang, Y., Song, S., Song, Y., Zhu, C., & Qin, L. (2025). Development Status of Textured Piezoelectric Ceramics and Preparation Processes. Coatings, 15(1), 51. https://doi.org/10.3390/coatings15010051