Preparation of Porous Ni-W Alloys Electrodeposited by Dynamic Hydrogen Bubble Template and Their Alkaline HER Properties
Abstract
1. Introduction
2. Experimental Section
2.1. Electrodeposition
2.2. Characterization
2.3. Electrocatalytic Evaluation
3. Results and Discussion
3.1. Characterization of Ni-W Alloys
3.2. Electrocatalytic Properties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ren, Y.; Li, Z.; Deng, B.; Ye, C.; Zhang, L.; Wang, Y.; Wang, Y.; Li, T.; Liu, Q.; Cui, G.; et al. Superior hydrogen evolution electrocatalysis enabled by CoP nanowire array on graphite felt. Int. J. Hydrogen Energy 2022, 47, 3580–3586. [Google Scholar] [CrossRef]
- Zhang, L.C.; Chen, H.; Hou, G.R.; Zhang, L.Z.; Li, Q.L.; Wu, Y.K.; Xu, M.; Bao, S.J. Puzzle-inspired carbon dots coupled with cobalt phosphide for constructing a highly-effective overall water splitting interface. Chem. Commun. 2020, 56, 257–260. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Zhang, L.; Gou, L.; Wei, S.; Hou, X.; Wu, L. High-performance methanol electrolysis towards energy-saving hydrogen production: Using Cu2O-Cu decorated Ni2P nanoarray as bifunctional monolithic catalyst. Chem. Eng. J. 2023, 454, 140292. [Google Scholar] [CrossRef]
- Zhang, L.; Li, L.; Liang, J.; Fan, X.; He, X.; Chen, J.; Li, J.; Li, Z.; Cai, Z.; Sun, Z.; et al. Highly efficient and stable oxygen evolution from seawater enabled by a hierarchical NiMoSx microcolumn@ NiFe-layered double hydroxide nanosheet array. Inorg. Chem. Front. 2023, 10, 2766–2775. [Google Scholar] [CrossRef]
- Zhang, L.; Zhao, H.; Xu, S.; Liu, Q.; Li, T.; Luo, Y.; Gao, H.; Shi, X.; Asiri, A.; Sun, X. Recent Advances in 1D ElectrospunNanocatalysts for Electrochemical Water Splitting. Small Struct. 2022, 2, 2000048. [Google Scholar] [CrossRef]
- Jiang, H.; Cong, N.; Jiang, H.; Tian, M.; Xie, Z.; Fang, H.; Han, J.; Ren, Z.; Zhu, Y. Dynamic hydrogen bubble template electrodeposition of Ru on amorphous Co support for electrochemical hydrogen evolution. Int. J. Hydrogen Energy 2023, 48, 21599–21609. [Google Scholar] [CrossRef]
- Zhao, G.; Rui, K.; Dou, S.X.; Sun, W. Heterostructures for electrochemical hydrogen evolution reaction: A review. Adv. Funct. Mater. 2018, 28, 1803291. [Google Scholar] [CrossRef]
- Vernickaite, E.; Tsyntsaru, N.; Sobczak, K.; Cesiulis, H. Electrodeposited tungsten-rich Ni-W, Co-W and Fe-W cathodes for efficient hydrogen evolution in alkaline medium. Electrochim. Acta 2019, 318, 597–606. [Google Scholar] [CrossRef]
- Yu, X.; Yang, J.; Sui, Z.; Wang, M. Effects of ultrasonic field on structure evolution of Ni film electrodeposited by bubble template method for hydrogen evolution electrocatalysis. J. Solid State Electrochem. 2021, 25, 2201–2212. [Google Scholar] [CrossRef]
- González-Buch, C.; Herraiz-Cardona, I.; Ortega, E.; García-Antón, J.; Pérez-Herranz, V. Synthesis and characterization of macroporous Ni, Co and Ni-Co electrocatalytic deposits for hydrogen evolution reaction in alkaline media. Int. J. Hydrogen Energy 2013, 38, 10157–10169. [Google Scholar] [CrossRef]
- Wang, J.; Shao, H.; Ren, S.; Hu, A.; Li, M. Fabrication of porous Ni-Co catalytic electrode with high performance in hydrogen evolution reaction. Appl. Surf. Sci. 2021, 539, 148045. [Google Scholar] [CrossRef]
- Barati Darband, G.; Aliofkhazraei, M.; Sabour Rouhaghdam, A.; Kiani, M.A. Three-dimensional Ni-Co alloy hierarchical nanostructure as efficient non-noble-metal electrocatalyst for hydrogen evolution reaction. Appl. Surf. Sci. 2019, 465, 846–862. [Google Scholar] [CrossRef]
- Reda, Y.; Abdel-Karim, R.; Zohdy, K.M.; El-Raghy, S. Electrochemical behavior of Ni-Cu foams fabricated by dynamic hydrogen bubble template electrodeposition used for energy applications. Ain Shams Eng. J. 2022, 13, 101532. [Google Scholar] [CrossRef]
- Han, Q.; Cui, S.; Pu, N.; Chen, J.; Liu, K.; Wei, X. A study on pulse plating amorphous Ni-Mo alloy coating used as HER cathode in alkaline medium. Int. J. Hydrogen Energy 2010, 35, 5194–5201. [Google Scholar] [CrossRef]
- Wang, M.; Wang, Z.; Yu, X.; Guo, Z. Facile one-step electrodeposition preparation of porous Ni-Mo film as electrocatalyst for hydrogen evolution reaction. Int. J. Hydrogen Energy 2015, 40, 2173–2181. [Google Scholar] [CrossRef]
- Raveendran, M.; Neethu, A.; Chitharanjan, H. Development of Ni-W alloy coatings and their electrocatalytic activity for water splitting reaction. Phys. B Condens. Matter 2020, 597, 412359. [Google Scholar] [CrossRef]
- Jameei Rad, P.; Aliofkhazraei, M.; Barati Darband, G. Ni-W nanostructure well-marked by Ni selective etching for enhanced hydrogen evolution reaction. Int. J. Hydrogen Energy 2019, 44, 880–894. [Google Scholar] [CrossRef]
- Hong, S.H.; Ahn, S.H.; Choi, J.; Kim, J.Y.; Kim, H.Y.; Kim, H.J.; Jang, J.H.; Kim, H.; Kim, S.K. High-activity electrodeposited Ni-W catalysts for hydrogen evolution in alkaline water electrolysis. Appl. Surf. Sci. 2015, 349, 629–635. [Google Scholar] [CrossRef]
- Tang, J.; Niu, J.; Yang, C.; Rajendran, S.; Lei, Y.; Sawangphruk, M.; Zhang, X.; Qin, J. Twin boundaries boost the hydrogen evolution reaction on the solid solution of nickel and tungsten. Fuel 2022, 330, 125510. [Google Scholar] [CrossRef]
- Gao, D.; Guo, J.; Cui, X.; Yang, L.; Yang, Y.; He, H.; Xiao, P.; Zhang, Y. Three-Dimensional Dendritic Structures of Ni-Co-Mo as Efficient Electrocatalysts for the Hydrogen Evolution Reaction. ACS Appl. Mater. Interfaces 2017, 9, 22420–22431. [Google Scholar] [CrossRef]
- Vijayakumar, J.; Mohan, S.; Anand Kumar, S.; Suseendiran, S.R.; Pavithra, S. Electrodeposition of Ni-Co-Sn alloy from choline chloride-based deep eutectic solvent and characterization as cathode for hydrogen evolution in alkaline solution. Int. J. Hydrogen Energy 2013, 38, 10208–10214. [Google Scholar] [CrossRef]
- Lotfi, N.; Barati Darband, G.H. Energy-Saving Electrochemical Hydrogen Production on Dynamic Hydrogen Bubble-Template Electrodeposited Ni-Cu-Mn Nano-Micro Dendrite. J. Electrochem. Soc. 2022, 169, 096508. [Google Scholar] [CrossRef]
- Lu, S.S.; Shang, X.; Zhang, L.M.; Dong, B.; Gao, W.K.; Dai, F.N.; Liu, B.; Chai, Y.M.; Liu, C.G. Heterostructured binary Ni-W sulfides nanosheets as pH-universal electrocatalyst for hydrogen evolution. Appl. Surf. Sci. 2018, 445, 445–453. [Google Scholar] [CrossRef]
- Machado Oliveira, J.A.; Filgueirade Almeida, A.; Nascimento Campos, A.R.; Prasad, S.; Nicacio Alves, J.J.; Costa de Santana, R.A. Effect of current density, temperature and bath pH on properties of Ni-W-Co alloys obtained by electrodeposition. J. Alloys Compd. 2021, 853, 157104. [Google Scholar] [CrossRef]
- Allahyarzadeh, M.H.; Aliofkhazraei, M.; Rezvanian, A.R.; Torabinejad, V.; Sabour Rouhaghdam, A.R. Ni-W electrodeposited coatings: Characterization, properties and applications. Surf. Coat. Technol. 2016, 307, 978–1010. [Google Scholar] [CrossRef]
- Bahari Mollamahale, Y.; Jafari, N.; Hosseini, D. Electrodeposited Ni-W nanoparticles: Enhanced catalytic activity toward hydrogen evolution reaction in acidic media. Mater. Lett. 2018, 213, 15–18. [Google Scholar] [CrossRef]
- Zhang, Y.; Bilan, H.K.; Podlaha, E. Enhancing the hydrogen evolution reaction with Ni-W-TiO2 composites. Electrochem. Commun. 2018, 96, 108–112. [Google Scholar] [CrossRef]
- Su, C.; Sa, Z.; Liu, Y.; Zhao, L.; Wu, F.; Bai, W. Excellent Properties of Ni-15 wt.% W Alloy Electrodeposited from a Low-Temperature Pyrophosphate System. Coatings 2021, 11, 1262. [Google Scholar] [CrossRef]
- Juškėnas, R.; Valsiūnas, I.; Pakštas, V.; Selskis, A.; Jasulaitienė, V.; Karpavičienė, V.; Kapočius, V. XRD, XPS and AFM studies of the unknown phase formed on the surface during electrodeposition of Ni–W alloy. Appl. Surf. Sci. 2006, 253, 1435–1442. [Google Scholar] [CrossRef]
- Chianpairot, A.; Lothongkum, G.; Schuh, C.A.; Boonyongmaneerat, Y. Corrosion of nanocrystalline Ni-W alloys in alkaline and acidic 3.5wt.% NaCl solutions. Corros. Sci. 2011, 53, 1066–1071. [Google Scholar] [CrossRef]
- Rosalbino, F.; Delsante, S.; Borzone, G.; Angelini, E.M.M.A. Correlation of microstructure and catalytic activity of crystalline Ni–Co–Y alloy electrode for the hydrogen evolution reaction in alkaline solution. J. Alloys Compd. 2007, 429, 270–275. [Google Scholar] [CrossRef]
- McCrory, C.C.L.; Jung, S.; Peters, J.C.; Jaramillo, T.F. Benchmarking Heterogeneous Electrocatalysts for the Oxygen Evolution Reaction. J. Am. Chem. Soc. 2013, 135, 16977–16987. [Google Scholar] [CrossRef] [PubMed]
Chemicals/Parameters | Values |
---|---|
NiSO4·6H2O | 52 g L−1 |
NaWO4·2H2O | 50, 100 gL−1 |
Na4P2O7·10H2O | 89 gL−1 |
NH3 H2O | ~20 mL |
H3BO3 | 120 gL−1 |
Bath temperature | 55 °C |
Current density | 0.1–0.6 A cm−2 |
pH | 8.8–9.2 |
Samples | Na2WO4·2H2O/g L−1 | Current Density/A cm−2 | Time/min |
---|---|---|---|
CNiW10-1 | 100 | 0.1 | 30 |
PNiW5-6 | 50 | 0.6 | 5 |
PNiW10-6 | 100 | 0.6 | 5 |
Catalysts Material | Overpotential of Current Density at 10 mA cm−2 (mV) | Tafel Slope (mV per Decade) | pH | Refs. |
---|---|---|---|---|
T-Ru/a-Cu | 49 | 46.4 | 14 | [6] |
Ni-Co | 197 | 92 | 14 | [11] |
Ni-Co | 107 | 118 | 14 | [12] |
Ni-Mo | 62 (200 mA cm−2 and 80 °C) | 20.1 | 14.8 | [14] |
Ni-Mo | 47 (100 mA cm−2) | NA | 14 | [15] |
Ni-W | 169 | 130 | 14 | [17] |
Ni-Co-Mo | 132 | 108 | 14 | [20] |
Ni-Co-Sn | NA | 122 | 14 | [21] |
Ni-Cu-Mn | 63 | 111 | 14 | [31] |
Samples | b/mV dec−1 | i0/mA cm−2 | η10 (mV) | η20 (mV) | H50 (mV) | η100 (mV) |
---|---|---|---|---|---|---|
Fe | 142 | 0.030 | 357 | 391 | - | - |
CNiW10-1 | 92 | 0.012 | 267 | 295 | 341 | - |
PNiW5-6 | 111 | 0.062 | 243 | 273 | 331 | 388 |
PNiW10-6 | 144 | 0.741 | 166 | 213 | 269 | 308 |
Pt | 143 | 7.079 | 55 | 77 | 124 | 173 |
Samples | Rs/Ω cm2 | Rct/Ω cm2 | CPE-T/mF cm−2 | n (0 < n < 1) |
---|---|---|---|---|
CNiW10-1 | 3.83 | 80.38 | 0.182 | 0.86 |
PNiW5-6 | 3.68 | 22.07 | 2.625 | 0.71 |
PNiW10-6 | 3.47 | 9.30 | 15.324 | 0.52 |
Fe | 4.84 | 124.84 | 0.551 | 0.79 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Li, L.; Li, W.; Lu, L.; Tian, L.; Liu, Y.; Su, C.; Tian, W. Preparation of Porous Ni-W Alloys Electrodeposited by Dynamic Hydrogen Bubble Template and Their Alkaline HER Properties. Coatings 2024, 14, 957. https://doi.org/10.3390/coatings14080957
Li Y, Li L, Li W, Lu L, Tian L, Liu Y, Su C, Tian W. Preparation of Porous Ni-W Alloys Electrodeposited by Dynamic Hydrogen Bubble Template and Their Alkaline HER Properties. Coatings. 2024; 14(8):957. https://doi.org/10.3390/coatings14080957
Chicago/Turabian StyleLi, Yufei, Linghao Li, Wenzhe Li, Linfeng Lu, Lu Tian, Yangyang Liu, Changwei Su, and Weidong Tian. 2024. "Preparation of Porous Ni-W Alloys Electrodeposited by Dynamic Hydrogen Bubble Template and Their Alkaline HER Properties" Coatings 14, no. 8: 957. https://doi.org/10.3390/coatings14080957
APA StyleLi, Y., Li, L., Li, W., Lu, L., Tian, L., Liu, Y., Su, C., & Tian, W. (2024). Preparation of Porous Ni-W Alloys Electrodeposited by Dynamic Hydrogen Bubble Template and Their Alkaline HER Properties. Coatings, 14(8), 957. https://doi.org/10.3390/coatings14080957