A Light-Driven Carbon Nanocoil Microrobot
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, J.; Gao, W. Nano/Microscale Motors: Biomedical Opportunities and Challenges. ACS Nano 2012, 6, 5745–5751. [Google Scholar] [CrossRef]
- Solovev, A.A.; Xi, W.; Gracias, D.H.; Harazim, S.M.; Deneke, C.; Sanchez, S.; Schmidt, O.G. Self-Propelled Nanotools. ACS Nano 2012, 6, 1751–1756. [Google Scholar] [CrossRef]
- Orozco, J.; García-Gradilla, V.; D’Agostino, M.; Gao, W.; Cortes, A.; Wang, J. Artificial Enzyme-Powered Microfish for Water-Quality Testing. ACS Nano 2013, 7, 818–824. [Google Scholar] [CrossRef]
- Guix, M.; Mayorga-Martinez, C.; Merkoci, A. Nano/Micromotors in (Bio)Chemical Science Applications. Chem. Rev. 2014, 114, 6285–6322. [Google Scholar] [CrossRef]
- Donald, B.R.; Levey, C.G.; McGray, C.D.; Paprotny, I.; Rus, D. An Untethered, Electrostatic, Globally Controllable MEMS Micro-robot. J. Microelectromech. Syst. 2006, 15, 1–15. [Google Scholar] [CrossRef]
- Bouchebout, S.; Bolopion, A.; Abrahamians, J.O.; Régnier, S. An Overview of Multiple DOF Magnetic Actuated Micro-robots. J. Micro-Nano Mechatron. 2012, 7, 97–113. [Google Scholar] [CrossRef]
- Kósa, G.; Shoham, M.; Zaaroor, M. Propulsion Method for Swimming Microrobots. IEEE Trans. Robot. 2007, 23, 137–150. [Google Scholar] [CrossRef]
- Floyd, S.R.C. Mag-Microbots: Design, Modeling, and Implementation of an Untethered Magnetically Controlled Micro-Robotic System. Ph.D. Thesis, Carnegie Mellon University, Pittsburgh, PA, USA, 2010; p. 220. [Google Scholar]
- Jing, W.; Chen, X.; Lyttle, S.; Fu, Z.; Shi, Y.; Cappelleri, D.J. A Magnetic Thin Film Microrobot with Two Operating Modes. In Proceedings of the IEEE International Conference on Robotics and Automation, Shanghai, China, 9–13 May 2011; pp. 96–101. [Google Scholar]
- Liew, L.A.; Bright, V.M.; Dunn, M.L.; Daily, J.W.; Raj, R. Development of SiCN Ceramic Thermal Actuators. In Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems, Las Vegas, NV, USA, 24 January 2002; pp. 590–593. [Google Scholar]
- Palagi, S.; Mark, A.G.; Reigh, S.Y.; Melde, K.; Qiu, T.; Zeng, H.; Parmeggiani, C.; Martella, D.; Sanchez-Castillo, A.; Kapernaum, N.; et al. Structured light enables biomimetic swimming and versatile locomotion of photoresponsive soft microrobots. Nat. Mater. 2016, 15, 647. [Google Scholar] [CrossRef]
- Maggi, C.; Saglimbeni, F.; Dipalo, M.; De Angelis, F.; Di Leonardo, R. Micromotors with asymmetric shape that efficiently convert light into work by thermocapillary effects. Nat. Commun. 2015, 6, 7855. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Lin, X.; Wu, Y.; Si, T.; Sun, J.; He, Q. Near-Infrared Light-Triggered “On/Off” Motion of Polymer Multilayer Rockets. ACS Nano 2014, 8, 6097. [Google Scholar] [CrossRef] [PubMed]
- Dai, B.; Wang, J.; Xiong, Z.; Zhan, X.; Dai, W.; Li, C.-C.; Feng, S.-P.; Tang, J. Programmable artificial phototactic microswimmer. Nat. Nanotechnol. 2016, 11, 1087. [Google Scholar] [CrossRef] [PubMed]
- Dong, R.; Hu, Y.; Wu, Y.; Gao, W.; Ren, B.; Wang, Q.; Cai, Y. Visible-Light-Driven BiOI-Based Janus Micromotor in Pure Water. J. Am. Chem. Soc. 2017, 139, 1722. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Wu, X.; Qin, H.; Zhao, Z.; Liu, H. Light-Driven and Light-Guided Microswimmers. Adv. Funct. Mater. 2016, 26, 3164–3171. [Google Scholar] [CrossRef]
- Xuan, M.; Shao, J.; Gao, C.; Wang, W.; Dai, L.; He, Q. Self-Propelled Nanomotors for Thermomechanically Percolating Cell Membranes. Angew. Chem. Int. Ed. Engl. 2018, 57, 12463. [Google Scholar] [CrossRef] [PubMed]
- Hong, Y.; Diaz, M.; Córdova-Figueroa, U.M.; Sen, A. Light-Driven Titanium-Dioxide-Based Reversible Microfireworks and Micromotor/Micropump Systems. Adv. Funct. Mater. 2010, 20, 1568–1576. [Google Scholar] [CrossRef]
- Harder, P.; Iyisan, N.; Wang, C.; Kohler, F.; Neb, I.; Lahm, H.; Dressen, M.; Krane, M.; Dietz, H.; Oezkale, B. A Laser-Driven Microrobot for Thermal Stimulation of Single Cells. Adv. Healthc. Mater. 2023, 12, 2300904. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Yu, J.; Lu, X.; He, X. Nanoparticle systems reduce systemic toxicity in cancer treatment. Nanomedicine 2016, 11, 103–106. [Google Scholar] [CrossRef]
- Deng, C.; Pan, L.; Ma, H.; Cui, R. Electromechanical vibrationof carbon nanocoils. Carbon 2015, 81, 758–766. [Google Scholar] [CrossRef]
- Liu, Y.; Li, C.; Zhao, M.; Shen, J.; Pan, L. A microfluidics vapor-membrane-valve generated by laser irradiation on carbon nanocoils. RSC Adv. 2023, 13, 20248–20254. [Google Scholar] [CrossRef]
- Liu, Y.; Sun, R.; Li, L.; Shen, J.; Pan, L. Carbon Nanocoil-Based Photothermal Conversion Carrier for Microbubble Transport. Coatings 2023, 13, 1392. [Google Scholar] [CrossRef]
- Jung, K.K.; Jung, Y.; Choi, C.J.; Ko, J.S. Highly reliable superhydrophobic surface with carbon nanotubes immobilized on a PDMS/adhesive multilayer. ACS Omega 2018, 3, 12956–12966. [Google Scholar] [CrossRef] [PubMed]
- Moon, H.K.; Lee, S.H.; Choi, H.C. In Vivo Near-Infrared Mediated Tumor Destruction by Photothermal Effect of Carbon Nanotubes. ACS Nano 2009, 3, 3707–3713. [Google Scholar] [CrossRef] [PubMed]
- Jagadeesh, P.; Murali, K.; Idichandy, V.G. Experimental investigation of hydrodynamic force coefficients over AUV hull form. Ocean Eng. 2009, 36, 113–118. [Google Scholar] [CrossRef]
- Panda, J.P.; Warrior, H.V. Numerical Studies on Drag Reduction of an Axisymmetric Body of Revolution with Antiturbulence Surface. J. Offshore Mech. Arct. Eng.-Trans. ASME 2021, 143, 064501. [Google Scholar] [CrossRef]
- Mehra, N.K.; Jain, K.; Jain, N.K. Pharmaceutical and biomedical applications of surface engineered carbon nanotubes. Drug Discov. Today 2015, 20, 750–759. [Google Scholar] [CrossRef]
- Das, M.; Singh, R.P.; Datir, S.R.; Jain, S. Intranuclear Drug Delivery and Effective in Vivo Cancer Therapy via Estradiol–PEGAppended Multiwalled Carbon Nanotubes. Mol. Pharm. 2013, 10, 3404–3416. [Google Scholar] [CrossRef]
- Chen, Y.; Pan, R.; Wang, Y.; Guo, P.; Liu, X.; Ji, F.; Hu, J.; Yan, X.; Wang, G.; Zhang, L.; et al. Carbon Helical Nanorobots Capable of Cell Membrane Penetration for Single Cell Targeted SERS Bio-Sensing and Photothermal Cancer Therapy. Adv. Mater. 2022, 32, 2200600. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, J.; Huang, H.; Cong, T.; Yang, S.; Chen, H.; Qin, J.; Usman, M.; Fan, Z.; Pan, L. Growth of Carbon Nanocoils by Porous a-Fe2O3/SnO2 Catalyst and Its Buckypaper for High Efficient Adsorption. Nano-Micro Lett. 2020, 12, 23. [Google Scholar] [CrossRef]
- Ashkin, A.; Dziedzic, J.M.J.; Bjorkholm, E.; Chu, S. Observation of a Single-Beam Gradient Force Optical Trap for Dielectric Particles. Opt. Lett. 1986, 11, 288–290. [Google Scholar] [CrossRef]
- Petr, K.; Sadeghpour, H.R. Laser Spinning of Nanotubes: A Path to Fast-Rotating Microdevices. Phys. Rev. 2002, 65, 161401. [Google Scholar]
- Klemens, P.G. Anharmonic Decay of Optical Phonons. Phys. Rev. 1966, 148, 845. [Google Scholar] [CrossRef]
- Usher, S.; Srivastava, G.P. Theoretical study of the anharmonic decay of nonequilibrium LO phonons in semiconductor structures. Phys. Rev. B 1994, 50, 14179. [Google Scholar] [CrossRef]
- Král, P.; Shapiro, M. Nanotube Electron Drag in Flowing Liquids. Phys. Rev. Lett. 2001, 86, 131. [Google Scholar] [CrossRef] [PubMed]
- Landau, L.D.; Lifshitz, E.M. Elasticity Theory, 3rd ed.; Pergamon Press: New York, NY, USA, 1986. [Google Scholar]
- Arnold, R.N.; Maunder, L. Gyrodynamics and Its Enginering Applications; Academic Press: New York, NY, USA, 1961. [Google Scholar]
- Whitley, S. Review of the gas centrifuge until 1962. Part I: Principles of separation physics. Rev. Mod. Phys. 1984, 56, 41. [Google Scholar] [CrossRef]
- Wang, P.; Pan, L.; Li, C.; Zheng, J. Highly Efficient Near-Infrared Photothermal Conversion of a Single Carbon Nanocoil Indicatedby Cell Ejection. J. Phys. Chem. C 2018, 122, 27696–27701. [Google Scholar] [CrossRef]
- Liu, W.; Cui, J.; Wang, J.; Xia, G.; Li, Z. Negative thermophoresis of nanoparticles in liquids. Phys. Fluids 2023, 35, 032004. [Google Scholar] [CrossRef]
- Li, D.; Yuan, L.; Yang, Y.; Deng, X.; Lü, X.; Huang, Y.; Cao, Z.; Liu, H.; Sun, X. Adsorption and adhesion of blood proteins and fibroblasts on multi-wall carbon nanotubes. Sci. China Ser. C Life Sci. 2009, 52, 479–482. [Google Scholar] [CrossRef]
- Lobo, A.O.; Antunes, E.F.; Machado, A.H.A.; Pacheco-Soares, C.; Trava-Airoldi, V.J.; Corat, E.J. Cell viability and adhesion on as grown multi-wall carbon nanotube films. Mater. Sci. Eng. C 2008, 28, 264–269. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Sun, R.; Sun, Y.; Shen, J.; Wu, X.; Xi, X.; Pan, L. A Light-Driven Carbon Nanocoil Microrobot. Coatings 2024, 14, 926. https://doi.org/10.3390/coatings14080926
Liu Y, Sun R, Sun Y, Shen J, Wu X, Xi X, Pan L. A Light-Driven Carbon Nanocoil Microrobot. Coatings. 2024; 14(8):926. https://doi.org/10.3390/coatings14080926
Chicago/Turabian StyleLiu, Yuli, Rui Sun, Yanming Sun, Jian Shen, Xizhuo Wu, Xin Xi, and Lujun Pan. 2024. "A Light-Driven Carbon Nanocoil Microrobot" Coatings 14, no. 8: 926. https://doi.org/10.3390/coatings14080926
APA StyleLiu, Y., Sun, R., Sun, Y., Shen, J., Wu, X., Xi, X., & Pan, L. (2024). A Light-Driven Carbon Nanocoil Microrobot. Coatings, 14(8), 926. https://doi.org/10.3390/coatings14080926