Microstructure Evolution in Magnetron-Sputtered WC/SiC Multilayers with Varied WC Layer Thicknesses
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. GIXR Measurement Analysis
3.2. XRD and AFM Measurement Analysis
3.3. Transmission Electron Microscope Analysis
3.4. Energy-Dispersive X-ray Spectroscopy Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lider, V.V. Multilayer X-ray Interference Structures. Uspekhi Fiz. Nauk 2019, 189, 1137–1171. [Google Scholar] [CrossRef]
- Spiller, E. 14. Reflecting Optics: Multilayers. In Vacuum Ultraviolet Spectroscopy I; Lucatorto, T., Samson, J.A., Ederer, D.L., De Graef, M., Eds.; Academic Press: Cambridge, MA, USA, 1998; Volume 31, pp. 271–288. ISBN 1079-4042. [Google Scholar]
- Huang, Q.; Medvedev, V.; Van de Kruijs, R.; Yakshin, A.; Louis, E.; Bijkerk, F. Spectral Tailoring of Nanoscale EUV and Soft X-ray Multilayer Optics. Appl. Phys. Rev. 2017, 4, 011104. [Google Scholar] [CrossRef]
- Barrett, R.; Baker, R.; Cloetens, P.; Morawe, C.; Tucoulou, R.; Vivo, A. Reflective Optics for Hard X-ray Nanofocusing Applications at the ESRF. Synchrotron Radiat. News 2016, 29, 10–15. [Google Scholar] [CrossRef]
- Windt, D.L. Advancements in Hard X-ray Multilayers for X-ray Astronomy. In Optics for EUV, X-ray, and Gamma-ray Astronomy VII, Proceedings of the SPIE Optical Engineering + Applications 2005, San Diego, CA, USA, 9–13 August 2015; SPIE: Bellingham, WA, USA, 2015; Volume 9603, p. 96031C. [Google Scholar] [CrossRef]
- Leake, S.J.; Chahine, G.A.; Djazouli, H.; Zhou, T.; Richter, C.; Hilhorst, J.; Petit, L.; Richard, M.I.; Morawe, C.; Barrett, R.; et al. The Nanodiffraction Beamline ID01/ESRF: A Microscope for Imaging Strain and Structure. J. Synchrotron Radiat. 2019, 26, 571–584. [Google Scholar] [CrossRef]
- Pradhan, P.C.; Gangir, D.; Majhi, A.; Nayak, M.; Biswas, A.; Bhattacharyya, D.; Lodha, G.S. Fabrication and Performance of a High Resolution Ultra-Short Period W/B4C Multilayer Structure. J. Phys. D Appl. Phys. 2016, 49, 135305. [Google Scholar] [CrossRef]
- Majhi, A.; Nayak, M.; Pradhan, P.C.; Jena, S.; Gome, A.; Singh, M.N.; Srivastava, H.; Reddy, V.R.; Srivastava, A.K.; Sinha, A.K.; et al. Sub-Nanograin Metal Based High Efficiency Multilayer Reflective Optics for High Energies. RSC Adv. 2021, 11, 28097–28105. [Google Scholar] [CrossRef]
- Chon, K.S. Trilayer Model in Design of W/C Multilayer Mirrors with a Small Period Thickness. J. Mech. Sci. Technol. 2019, 33, 5837–5842. [Google Scholar] [CrossRef]
- Christensen, F.E.; Jensen, C.P.; Madsen, K.K.; Pivovaroff, M.J.; Chen, H.; Dariel, A.; Høghøj, P. Novel Multilayer Designs for Future Hard X-ray Missions. In Space Telescopes and Instrumentation II: Ultraviolet to Gamma Ray, Proceedings of the SPIE Astronomical Telescopes + Instrumentation 2006, Orlando, FL, USA, 24–31 May 2006; Society of Photo-Optical Instrumentation Engineers: Bellingham, WA, USA, 2006; Volume 6266, p. 626611. [Google Scholar] [CrossRef]
- Louis, E.; Yakshin, A.E.; Tsarfati, T.; Bijkerk, F. Nanometer Interface and Materials Control for Multilayer EUV-Optical Applications. Prog. Surf. Sci. 2011, 86, 255–294. [Google Scholar] [CrossRef]
- Yang, Z.; Zhu, J.; Zhu, Y.; Luo, H.; Li, Z.; Jiang, H.; Zhao, L. Asymmetric Interface and Growth Mechanism in Sputtered W/Si and WSi2/Si Multilayers. Appl. Surf. Sci. 2022, 604, 154531. [Google Scholar] [CrossRef]
- Harrison, F.A.; Boggs, S.E.; Bolotnikov, A.E.; Christensen, F.E.; Cook, W.R., III; Craig, W.W.; Hailey, C.J.; Jimenez-Garate, M.A.; Mao, P.H.; Schindler, S.M.; et al. Development of the High-Energy Focusing Telescope (HEFT) Balloon Experiment. In X-ray Optics, Instruments, and Missions III, Proceedings of the Astronomical Telescopes and Instrumentation 2000, Munich, Germany, 17–31 March 2000; Truemper, J.E., Aschenbach, B., Eds.; SPIE: Bellingham, WA, USA, 2000; Volume 4012, pp. 693–699. [Google Scholar]
- Jensen, C.P.; Madsen, K.K.; Christensen, F.E. Small D-Spacing WC/SiC Multilayers for Future Hard X-ray Telescope Designs. Exp. Astron. 2005, 20, 93–103. [Google Scholar] [CrossRef]
- Jensen, C.P.; Madsen, K.K.; Christensen, F.E. Investigation of New Material Combinations for Hard X-ray Telescope Designs. In Space Telescopes and Instrumentation II: Ultraviolet to Gamma R, Proceedings of the SPIE Astronomical Telescopes + Instrumentation 2006, Orlando, FL, USA, 24–31 May 2006; SPIE: Bellingham, WA, USA, 2006; Volume 6266, p. 626612. [Google Scholar] [CrossRef]
- Larruquert, J.I. Optical Properties of Thin Film Materials at Short Wavelengths; Elsevier: Amsterdam, The Netherlands, 2018; ISBN 9780081020739. [Google Scholar]
- Fernández-Perea, M.; Pivovaroff, M.J.; Soufli, R.; Alameda, J.; Mirkarimi, P.; Descalle, M.A.; Baker, S.L.; McCarville, T.; Ziock, K.; Hornback, D.; et al. Ultra-Short-Period WC/SiC Multilayer Coatings for X-ray Applications. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2013, 710, 114–119. [Google Scholar] [CrossRef]
- Fernández-Perea, M.; Descalle, M.A.; Soufli, R.; Ziock, K.P.; Alameda, J.; Baker, S.L.; McCarville, T.J.; Honkimäki, V.; Ziegler, E.; Jakobsen, A.C.; et al. Physics of Reflective Optics for the Soft Gamma-Ray Photon Energy Range. Phys. Rev. Lett. 2013, 111, 1–5. [Google Scholar] [CrossRef]
- Pivovaroff, M.J.; Ziock, K.P.; Fernandez-Perea, M.; Harrison, M.J.; Soufli, R. Gamma-Ray Mirrors for Direct Measurement of Spent Nuclear Fuel. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2014, 743, 109–113. [Google Scholar] [CrossRef]
- Brejnholt, N.F.; Decker, T.A.; Hill, R.M.; Chen, H.; Williams, G.J.; Park, J.; Alameda, J.B.; Fernández-Perea, M.; Pivovaroff, M.J.; Soufli, R.; et al. Reflective Multilayer Optic as Hard X-ray Diagnostic on Laser-Plasma Experiment. Rev. Sci. Instrum. 2015, 86, 013110. [Google Scholar] [CrossRef]
- Bajt, S.; Prasciolu, M.; Fleckenstein, H.; Domaracký, M.; Chapman, H.N.; Morgan, A.J.; Yefanov, O.; Messerschmidt, M.; Du, Y.; Murray, K.T.; et al. X-ray Focusing with Efficient High-NA Multilayer Laue Lenses. Light Sci. Appl. 2018, 7, 17162. [Google Scholar] [CrossRef]
- Prasciolu, M.; Bajt, S. On the Properties of WC/SiC Multilayers. Appl. Sci. 2018, 8, 571. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, Z.; Liu, Y.; Wang, Z. Crystallization and Composition of Ni-C/Ti Multilayer with Varied Ni-C Thickness. Coatings 2022, 12, 1144. [Google Scholar] [CrossRef]
- Zhong, Q.; Zhang, Z.; Ma, S.; Qi, R.; Li, J.; Wang, Z.; Le Guen, K.; André, J.M.; Jonnard, P. The Transition from Amorphous to Crystalline in Al/Zr Multilayers. J. Appl. Phys. 2013, 113, 133508. [Google Scholar] [CrossRef]
- Feng, Y.; Zhang, Z.; Qi, R.; Huang, Q.; Wang, Z. Microstructural Evolution of Ni/Ti Multilayers Doped with Nitrogen at Different d-Spacings for Neutron Supermirrors. Vacuum 2023, 210, 111881. [Google Scholar] [CrossRef]
- Oliver, J.B. Analysis of a Planetary-Rotation System for Evaporated Optical Coatings. Appl. Opt. 2016, 55, 8550. [Google Scholar] [CrossRef]
- Wei, Z.; Zhang, Z.; Jiang, L.; Yang, Y.; Chang, C.; Feng, Y.; Qi, R.; Huang, Q.; Yan, W.; Xie, C.; et al. Background Pressure Induced Structural and Chemical Change in NiV/B4C Multilayers Prepared by Magnetron Sputtering. Front. Phys. 2022, 10, 837819. [Google Scholar] [CrossRef]
- Henke, B.L.; Gullikson, E.M.; Davis, J.C. X-ray Interactions: Photoabsorption, Scattering, Transmission, and Reflection at E = 50–30,000 EV, Z = 1–92. At. Data Nucl. Data Tables 1993, 54, 181–342. [Google Scholar] [CrossRef]
- Wormington, M.; Panaccione, C.; Matney, K.M.; Bowen, D.K. Characterization of Structures from X-ray Scattering Data Using Genetic Algorithms. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 1999, 357, 2827–2848. [Google Scholar] [CrossRef]
- Smetanina, K.E.; Andreev, P.V.; Lantsev, E.A.; Nokhrin, A.V.; Murashov, A.A.; Isaeva, N.V.; Blagoveshchensky, Y.V.; Boldin, M.S.; Chuvil’deev, V.N. Nonuniform Distribution of Crystalline Phases and Grain Sizes in the Surface Layers of WC Ceramics Produced by Spark Plasma Sintering. Coatings 2023, 13, 1051. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, J.; Gong, L.; Tang, J.; Wang, X.; Guo, H.; Zhou, X. P-Doped W2C Nanoparticles for Hydrogen Evolution Reaction Powered by a Wind-Driven Triboelectric Nanogenerator. Nano Energy 2024, 121, 109242. [Google Scholar] [CrossRef]
- Mazur, M.; Poniedziałek, A.; Kaczmarek, D.; Wojcieszak, D.; Domaradzki, J.; Gibson, D. Investigation of Various Properties of HfO2-TiO2 Thin Film Composites Deposited by Multi-Magnetron Sputtering System. Appl. Surf. Sci. 2017, 421, 170–178. [Google Scholar] [CrossRef]
- Obstarczyk, A.; Kaczmarek, D.; Wojcieszak, D.; Mazur, M.; Domaradzki, J.; Kotwica, T.; Pastuszek, R.; Schmeisser, D.; Mazur, P.; Kot, M. Tailoring Optical and Electrical Properties of Thin-Film Coatings Based on Mixed Hf and Ti Oxides for Optoelectronic Application. Mater. Des. 2019, 175, 107822. [Google Scholar] [CrossRef]
S1 | S2 | S3 | S4 | S5 | |
---|---|---|---|---|---|
WC thickness (dWC) | 1 nm | 1.5 nm | 3 nm | 6 nm | 10 nm |
SiC thickness (dSiC) | 3 nm | 3 nm | 3 nm | 3 nm | 3 nm |
Period | 4 nm | 4.5 nm | 6 nm | 9 nm | 13 nm |
Number of bilayers (N) | 120 | 80 | 40 | 20 | 12 |
Residence time for WC | 12.72 s | 19.08 s | 38.16 s | 76.32 s | 127.20 s |
S1 | S2 | S3 | S4 | S5 | |
---|---|---|---|---|---|
WC thickness (dWC) | 1.05 nm | 1.71 nm | 2.82 nm | 5.87 nm | 10.58 nm |
SiC thickness (dSiC) | 2.94 nm | 2.91 nm | 2.90 nm | 2.90 nm | 2.73 nm |
Average interface width | 0.19 nm | 0.20 nm | 0.20 nm | 0.23 nm | 0.25 nm |
Number of bilayers (N) | 120 | 80 | 40 | 20 | 12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, T.; Zhang, Z.; Wang, Z.; Jiang, L.; Qi, R.; Huang, Q.; Zhang, Z.; Wang, Z. Microstructure Evolution in Magnetron-Sputtered WC/SiC Multilayers with Varied WC Layer Thicknesses. Coatings 2024, 14, 720. https://doi.org/10.3390/coatings14060720
Li T, Zhang Z, Wang Z, Jiang L, Qi R, Huang Q, Zhang Z, Wang Z. Microstructure Evolution in Magnetron-Sputtered WC/SiC Multilayers with Varied WC Layer Thicknesses. Coatings. 2024; 14(6):720. https://doi.org/10.3390/coatings14060720
Chicago/Turabian StyleLi, Tongzhou, Zhe Zhang, Zile Wang, Li Jiang, Runze Qi, Qiushi Huang, Zhong Zhang, and Zhanshan Wang. 2024. "Microstructure Evolution in Magnetron-Sputtered WC/SiC Multilayers with Varied WC Layer Thicknesses" Coatings 14, no. 6: 720. https://doi.org/10.3390/coatings14060720
APA StyleLi, T., Zhang, Z., Wang, Z., Jiang, L., Qi, R., Huang, Q., Zhang, Z., & Wang, Z. (2024). Microstructure Evolution in Magnetron-Sputtered WC/SiC Multilayers with Varied WC Layer Thicknesses. Coatings, 14(6), 720. https://doi.org/10.3390/coatings14060720