Well-Dispersed CoNiO2 Nanosheet/CoNi Nanocrystal Arrays Anchored onto Monolayer MXene for Superior Electromagnetic Absorption at Low Frequencies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemical Reagent
2.2. Preparation of Monolayer MXene Nanoflakes
2.3. Preparation of CoNiO2/CoNi Co-Decorating MXene
2.4. Material Characterization
3. Results
3.1. Microstructure of M–MCNO
3.2. Microwave Absorption Properties
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, S.J.; Li, J.Y.; Jin, X.T.; Wu, G.L. Current advances of transition metal dichalcogenides in electromagnetic wave absorption: A brief review. Int. J. Min. Met. Mater. 2023, 30, 428–445. [Google Scholar] [CrossRef]
- Liu, W.; Tan, S.J.; Yang, Z.H.; Ji, G.B. Enhanced low-frequency electromagnetic properties of MOF-derived cobalt through interface design. ACS Appl. Mater. Interfaces 2018, 10, 31610–31622. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Wu, Q.; Wang, X.Y.; Wang, B.L.; Liu, T. Metal-organic framework-derived Co/CoO nanoparticles with tunable particle size for strong low-frequency microwave absorption in the S and C bands. J. Colloid Interface Sci. 2022, 628, 10–21. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.T.; Fang, J.F.; Xu, C.Y.; Cao, H.; Zhang, R.X.; Zhao, B.; Huang, M.Q.; Wang, X.Y.; Lv, H.L.; Che, R.C. One-dimensional magnetic FeCoNi alloy toward low-frequency electromagnetic wave absorption. Nano-Micro Lett. 2022, 14, 170. [Google Scholar] [CrossRef]
- Dong, Y.Q.; Liang, X.C.; Zhong, S.J.; Yu, M.J.; Wang, C.G. A simple method for preparing flaky FeSiAl for low-frequency electromagnetic wave absorber. J. Magn. Magn. Mater. 2023, 574, 170676. [Google Scholar] [CrossRef]
- Sun, X.H.; Zhao, X.Y.; Zhang, X.Y.; Wu, G.H.; Rong, X.H.; Wang, X.W. TiO2 nanosheets/Ti3C2Tx MXene 2D/2D composites for excellent microwave absorption. ACS Appl. Nano Mater. 2023, 6, 14421–14430. [Google Scholar] [CrossRef]
- Dai, Y.; Wu, X.; Liu, Z.; Zhang, H.B.; Yu, Z.Z. Highly sensitive, robust and anisotropic MXene aerogels for efficient broadband microwave absorption. Compos. Part B-Eng. 2020, 200, 108263. [Google Scholar] [CrossRef]
- Yu, G.Y.; Shao, G.F.; Chen, Y.; Huang, X.G. Nanolayered ceramic-confined graphene aerogel with conformal heterointerfaces for low-frequency microwave absorption. ACS Appl. Mater. Interfaces 2023, 15, 39559–39569. [Google Scholar] [CrossRef]
- Hou, M.M.; Du, Z.J.; Liu, Y.; Ding, Z.Z.; Huang, X.Z.; Chen, A.L.; Zhang, Q.C.; Ma, Y.T.; Lu, S.J. Reduced graphene oxide loaded with magnetic nanoparticles for tunable low frequency microwave absorption. J. Alloys Compd. 2022, 913, 165137. [Google Scholar] [CrossRef]
- Lei, B.Y.; Hou, Y.L.; Meng, W.J.; Wang, Y.Q.; Yang, X.X.; Ren, M.X.; Zhao, D.L. Hierarchical bath lily-like hollow microspheres constructed by graphene and Fe3O4 nanoparticles with enhanced broadband and highly efficient low-frequency microwave absorption. Carbon 2022, 196, 280–289. [Google Scholar] [CrossRef]
- Wang, L.; Chen, Z.; Wang, X.; Zhang, L.Y.; Zhang, Z.T.; Zhao, Q.; Gao, Y.F. Fe3O4@C 3D foam for strong low-frequency microwave absorption. J. Mater. 2023, 9, 148–156. [Google Scholar] [CrossRef]
- Xiang, Z.C.; Song, Z.; Wang, T.S.; Feng, M.H.; Zhao, Y.J.; Zhang, Q.T.; Hou, Y.; Wang, L.X. Bead-like flexible ZIF-67-derived Co@Carbon composite nanofibre mat for wideband microwave absorption in C-band. Carbon 2024, 216, 118573. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, H.Y.; Wu, Q.B.; Li, S.K.; Gao, H.; Wan, B.S.; Wen, D.F.; Zeng, G.X. Magnetic enhanced high-efficiency electromagnetic wave absorbing MXene/Fe3O4 composite absorbers at 2–40 GHz. J. Mater. Chem. C 2023, 11, 4171–4181. [Google Scholar] [CrossRef]
- Wang, X.Y.; Xing, X.F.; Zhu, H.S.; Li, J.; Liu, T. State of the art and prospects of Fe3O4/carbon microwave absorbing composites from the dimension and structure perspective. Adv. Colloid Interface Sci. 2023, 318, 102960. [Google Scholar] [CrossRef] [PubMed]
- Xia, Y.X.; Gao, W.W.; Gao, C. A review on graphene-based electromagnetic functional materials: Electromagnetic wave shielding and absorption. Adv. Funct. Mater. 2022, 32, 2204591. [Google Scholar] [CrossRef]
- Liu, J.M.; Yu, W.Z.; Zhao, Z.H.; Liu, D.; Liu, S.S.; Wang, J.; Ma, M.L.; Yu, Q.H.; Yang, N.T. 3D honeycomb Fe/MXene derived from prussian blue microcubes with a tunable structure for efficient low-frequency and flexible electromagnetic absorbers. ACS Appl. Mater. Interfaces 2023, 15, 48519–48528. [Google Scholar] [CrossRef]
- Pan, F.; Rao, Y.P.; Batalu, D.; Cai, L.; Dong, Y.Y.; Zhu, X.J.; Shi, Y.Y.; Shi, Z.; Liu, Y.W.; Lu, W. Macroscopic electromagnetic cooperative network-enhanced MXene/Ni chains aerogel-based microwave absorber with ultra-low matching thickness. Nano-Micro Lett. 2022, 14, 140. [Google Scholar] [CrossRef] [PubMed]
- Yi, Q.J.; Zhang, F.; Song, Y.N.; Wang, X.; Zhang, H.; Li, C.L.; Piao, M.X. One-step synthesis of cobalt nanosheets depositing with carbon microsphere by microwave plasma assisted reduction chemical vapor deposition technique against electromagnetic pollution. Carbon 2023, 214, 118322. [Google Scholar] [CrossRef]
- Liu, P.B.; Gao, S.; Zhang, G.Z.; Huang, Y.; You, W.B.; Che, R.C. Hollow engineering to Co@N-doped carbon nanocages via synergistic protecting-etching strategy for ultrahigh microwave absorption. Adv. Funct. Mater. 2021, 31, 202102812. [Google Scholar] [CrossRef]
- Qu, Y.G.; Liu, Z.Y.; Li, X.; Si, Y.; Xu, R.X.; Liu, D. Ultrafine well-dispersed Co nanocrystals onto crumpled sphere-like rGO for superior low-frequency microwave absorption. Carbon 2023, 213, 118280. [Google Scholar] [CrossRef]
- Wang, S.P.; Liu, Z.Y.; Liu, Q.C.; Wang, B.J.; Wei, W.; Wu, H.; Xu, Z.J.; Li, S.K.; Huang, F.Z.; Zhang, H. Promoting the microwave absorption performance of hierarchical CF@NiO/Ni composites via phase and morphology evolution. Int. J. Min. Met. Mater. 2023, 30, 494–503. [Google Scholar] [CrossRef]
- Zhang, N.; Qi, S.Y.; Guo, Y.F.; Wang, P.F.; Ren, N.; Yi, T.F. Approaching high-performance lithium storage materials of CoNiO2 microspheres wrapped coal tar pitch-derived porous carbon. Dalton Trans. 2023, 52, 8704–8715. [Google Scholar] [CrossRef]
- Liu, Z.K.; Chen, J.; Que, M.D.; Zheng, H.Q.; Yang, L.F.; Yuan, H.D.; Ma, Y.Z.; Li, Y.J.; Yang, X.F. 2D Ti3C2Tx MXene/MOFs composites derived CoNi bimetallic nanoparticles for enhanced microwave absorption. Chem. Eng. J. 2022, 450, 138442. [Google Scholar] [CrossRef]
- Ye, S.Z.; Guan, X.F. HMT-controlled synthesis of mesoporous NiO hierarchical nanostructures and their catalytic role towards the thermal decomposition of ammonium perchlorate. Appl. Sci. 2019, 9, 2599. [Google Scholar] [CrossRef]
- Cho, E.C.; Chang-Jian, C.-W.; Huang, J.H.; Chou, J.A.; Syu, W.L.; Chen, Y.L.; Lee, K.C.; Hsiao, Y.S. Phase and morphology control in the synthesis of Co3O4 nanosphere/α-Co(OH)2 nanosheet hybrids for application in supercapacitors. J. Taiwan Inst. Chem. Eng. 2020, 110, 163–172. [Google Scholar] [CrossRef]
- Chang, M.; Jia, Z.R.; Wu, G.L.; Yin, P.F. Multiple dimension-component designed Co/Co9S8/Ti3C2Tx MXene composite for enhanced microwave absorption. Appl. Phys. Lett. 2023, 122, 131901. [Google Scholar] [CrossRef]
- Liang, L.Y.; Han, G.J.; Li, Y.; Zhao, B.; Zhou, B.; Feng, Y.Z.; Ma, J.M.; Wang, Y.M.; Zhang, R.; Liu, C.T. Promising Ti3C2Tx MXene/Ni chain hybrid with excellent electromagnetic wave absorption and shielding capacity. ACS Appl. Mater. Interfaces 2019, 11, 25399–25409. [Google Scholar] [CrossRef] [PubMed]
- Evans, S. Estimation of the uncertainties associated with XPS peak intensity determination. Surf. Interface Anal. 2004, 18, 323–332. [Google Scholar] [CrossRef]
- Greczynski, G.; Hultman, L. Compromising Science by Ignorant Instrument Calibration-Need to Revisit Half a Century of Published XPS Data. Angew. Chem. Int. Ed. 2020, 59, 5002–5006. [Google Scholar] [CrossRef]
- Zeng, X.J.; Zhao, C.; Yin, Y.C.; Nie, T.L.; Xie, N.H.; Yu, R.H.; Stucky, G.D. Construction of NiCo2O4 nanosheets-covered Ti3C2Tx MXene heterostructure for remarkable electromagnetic microwave absorption. Carbon 2022, 193, 26–34. [Google Scholar] [CrossRef]
- Liu, Z.Q.; Xiao, K.; Xu, Q.Z.; Li, N.; Su, Y.Z.; Wang, H.J.; Chen, S. Fabrication of hierarchical flower-like super-structures consisting of porous NiCo2O4 nanosheets and their electrochemical and magnetic properties. RSC Adv. 2013, 3, 4372–4380. [Google Scholar] [CrossRef]
- Wu, F.; Wan, L.Y.; Wang, T.; Tariq, M.R.; Shah, T.; Liu, P.; Zhang, Q.Y.; Zhang, B.L. Construction of binary assembled MOF-derived nanocages with dual-band microwave absorbing properties. J. Mater. Sci. Technol. 2022, 117, 36–48. [Google Scholar] [CrossRef]
- Fan, B.X.; Xing, L.; He, Q.M.; Zhou, F.J.; Yang, X.F.; Wu, T.; Tong, G.X.; Wang, D.M.; Wu, W.H. Selective synthesis and defects steering superior microwave absorption capabilities of hollow graphitic carbon nitride micro-polyhedrons. Chem. Eng. J. 2022, 435, 135086. [Google Scholar] [CrossRef]
- Fan, B.B.; Ansar, M.T.; Chen, Q.Q.; Wei, F.C.; Du, H.; Ou, Y.B.; Kan, E.J.; Chen, Y.Q.; Zhao, B.; Zhang, R. Microwave-assisted hydrothermal synthesis of 2D/2D MoS2/Ti3C2Tx heterostructure for enhanced microwave absorbing performance. J. Alloys Compd. 2022, 923, 166253. [Google Scholar] [CrossRef]
- He, F.L.; Zhao, W.; Cao, L.; Liu, Z.F.; Sun, L.Q.; Zhang, Z.Y.; Zhang, H.; Qi, T. The ordered mesoporous barium ferrite compounded with nitrogen-doped reduced graphene oxide for microwave absorption materials. Small 2023, 19, 2205644. [Google Scholar] [CrossRef]
- Guo, H.T.; Wang, X.; Pan, F.; Shi, Y.Y.; Jiang, H.J.; Cai, L.X.; Cheng, J.; Zhang, X.; Yang, Y.; Li, L.; et al. State of the art recent advances and perspectives in 2D MXene-based microwave absorbing materials: A review. Nano Res. 2023, 16, 10287–10325. [Google Scholar] [CrossRef]
- Cheng, J.B.; Liu, B.W.; Wang, Y.Q.; Zhao, H.B.; Wang, Y.Z. Growing CoNi nanoalloy@N-doped carbon nanotubes on MXene sheets for excellent microwave absorption. J. Mater. Sci. Technol. 2022, 130, 157–165. [Google Scholar] [CrossRef]
- Zhang, L.; Stalin, N.; Tran, N.; Mehrez, S.; Badran, M.F.; Mohanavel, V.; Xu, Q. Development of high-efficient double-layer microwave absorbers based on 3D cabbage-like CoFe2O4 and cauliflower-like polypyrrole. Ceram. Int. 2022, 48, 16374–16385. [Google Scholar] [CrossRef]
- Zou, Z.; Ning, M.Q.; Lei, Z.K.; Zhuang, X.H.; Tan, G.; Hou, J.J.; Xu, H.; Man, Q.K.; Li, J.B.; Li, R.W. 0D/1D/2D architectural Co@C/MXene composite for boosting microwave attenuation performance in 2-18 GHz. Carbon 2022, 193, 182–194. [Google Scholar] [CrossRef]
- Bao, Y.; Guo, S.; Wang, W.; Qi, X.; Jia, Z.; Guan, H. Heterogeneous burr-like CoNiO2/Ti3C2Tx MXene nanospheres for ultralow microwave absorption and satellite skin application. Chem. Eng. J. 2023, 473, 145409. [Google Scholar] [CrossRef]
- Li, C.; Qi, X.S.; Gong, X.; Peng, Q.; Chen, Y.L.; Xie, R.; Zhong, W. Magnetic-dielectric synergy and interfacial engineering to design yolk-shell structured CoNi@void@C and CoNi@void@C@MoS2 nanocomposites with tunable and strong wideband microwave absorption. Nano Res. 2022, 15, 6761–6771. [Google Scholar] [CrossRef]
- Ni, C.; Wu, D.; Xie, X.B.; Wang, B.L.; Wei, H.L.; Zhang, Y.; Zhao, X.J.; Liu, L.; Wang, B.; Du, W. Microwave absorption properties of microporous CoNi@(NiO-CoO) nanoparticles through dealloying. J. Magn. Magn. Mater. 2020, 503, 166631. [Google Scholar] [CrossRef]
- Guo, Z.Z.; Ren, P.G.; Yang, F.; Wu, T.; Zhang, L.X.; Chen, Z.Y.; Huang, S.Q.; Ren, F. MOF-Derived Co/C and MXene co-Decorated Cellulose-Derived Hybrid Carbon Aerogel with a Multi-Interface Architecture toward Absorption-Dominated Ultra-Efficient Electromagnetic Interference Shielding. ACS Appl. Mater. Interfaces 2023, 15, 7308–7318. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; Zhang, S.S.; Ma, B.B.; Xiong, Y.; Luo, H.; Cheng, Y.Z.; Li, X.C.; Wang, X.; Gong, R.Z. Bimetallic CoFe-MOF@Ti3C2Tx MXene derived composites for broadband microwave absorption. Chem. Eng. J. 2022, 431, 134007. [Google Scholar] [CrossRef]
- Cai, L.; Pan, F.; Zhu, X.J.; Dong, Y.Y.; Shi, Y.Y.; Xiang, Z.; Cheng, J.; Jiang, H.J.; Shi, Z.; Lu, W. Etching engineering and electrostatic self-assembly of N-doped MXene/hollow Co-ZIF hybrids for high-performance microwave absorbers. Chem. Eng. J. 2022, 434, 133865. [Google Scholar] [CrossRef]
- Hu, F.Y.; Wang, X.H.; Niu, H.H.; Zhang, S.; Fan, B.B.; Zhang, R. Synthesis and electromagnetic wave absorption of novel Mo2TiC2Tx MXene with diverse etching methods. J. Mater. Sci. 2022, 57, 7849–7862. [Google Scholar] [CrossRef]
- Zhu, S.Q.; Gao, Y.; Zhou, H.R.; Zheng, C.L.; Li, X.B.; Man, Q.K.; Liu, X.C. Expanded graphite/Co@C composites with dual functions of corrosion resistance and microwave absorption. J. Mater. Res. Technol. 2023, 23, 3557–3569. [Google Scholar] [CrossRef]
- Wu, M.; Wang, H.C.; Liang, X.H.; Wang, D.H. Flower-like 1T/2H-MoS2@α-Fe2O3 with enhanced electromagnetic wave absorption capabilities in the low frequency range. J. Mater. Chem. C 2023, 11, 2897–2910. [Google Scholar] [CrossRef]
- Wu, Q.; Wang, B.L.; Fu, Y.G.; Zhang, Z.F.; Yan, P.F.; Liu, T. MOF-derived Co/CoO particles prepared by low temperature reduction for microwave absorption. Chem. Eng. J. 2021, 410, 128378. [Google Scholar] [CrossRef]
- Jia, Z.R.; Zhang, X.Y.; Gu, Z.; Wu, G.L. MOF-derived Ni-Co bimetal/porous carbon composites as electromagnetic wave absorber. Adv. Compos. Hybrid Mater. 2023, 6, 28. [Google Scholar] [CrossRef]
- Jiang, B.; Yang, W.; Wang, C.N.; Bai, H.X.; Ma, G.; Li, Z.X.; Zhang, C.X.; Li, S.Y.; Chen, N.; Ta, N.; et al. Lightweight porous cobalt-encapsulated Nitrogen-Doped Carbon nanotubes for tunable, efficient and stable electromagnetic waves absorption. Carbon 2023, 202, 173–186. [Google Scholar] [CrossRef]
- Yang, K.; Cui, Y.H.; Wan, L.Y.; Wang, Y.B.; Tariq, M.R.; Liu, P.; Zhang, Q.Y.; Zhang, B.L. Preparation of three-dimensional Mo2C/NC@MXene and its efficient electromagnetic absorption properties. ACS Appl. Mater. Interfaces 2022, 14, 7109–7120. [Google Scholar] [CrossRef] [PubMed]
- Lu, Z.X.; Ren, F.; Guo, Z.Z.; Dai, Z.; Fu, B.Q.; Zong, Z.; Zhang, F.D.; Jin, Y.L.; Chen, Z.Y.; Ren, P.G. Facile construction of core-shell Carbon@CoNiO2 derived from yeast for broadband and high-efficiency microwave absorption. J. Colloid Interface Sci. 2022, 625, 415–424. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Wu, Z.C.; You, W.B.; Yang, L.T.; Che, R.C. Self-assembly MXene-rGO/CoNi film with massive continuous heterointerfaces and enhanced magnetic coupling for superior microwave absorber. Nano-Micro Lett. 2022, 14, 73. [Google Scholar] [CrossRef] [PubMed]
- Sun, Q.; Yang, X.; Shu, T.; Yang, X.F.; Qiao, M.; Wang, D.S.; Liu, Z.H.; Li, X.H.; Rao, J.S.; Zhang, Y.X.; et al. In situ synthesis of C-N@NiFe2O4@MXene/Ni nanocomposites for efficient electromagnetic wave absorption at an ultralow thickness level. Molecules 2023, 28, 233. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.J.; Wang, J.Q.; Li, H.Q.; Wu, Z.; Xing, Y.Q.; Chen, Y.F.; Liu, L. MoS2/MXene aerogel with conformal heterogeneous interfaces tailored by atomic layer deposition for tunable microwave absorption. Adv. Sci. 2022, 9, 2101988. [Google Scholar] [CrossRef] [PubMed]
- Zhi, D.D.; Li, T.; Qi, Z.H.; Li, J.Z.; Tian, Y.R.; Deng, W.T.; Meng, F.B. Core-shell heterogeneous graphene-based aerogel microspheres for high-performance broadband microwave absorption via resonance loss and sequential attenuation. Chem. Eng. J. 2022, 433, 134496. [Google Scholar] [CrossRef]
- Zhou, C.G.; Wang, X.X.; Luo, H.; Deng, L.W.; Wei, S.; Zheng, Y.W.; Jia, Q.; Liu, J.Q. Rapid and direct growth of bipyramid TiO2 from Ti3C2Tx MXene to prepare Ni/TiO2/C heterogeneous composites for high-performance microwave absorption. Chem. Eng. J. 2020, 383, 123095. [Google Scholar] [CrossRef]
- Zhang, C.; Wu, Z.C.; Xu, C.Y.; Yang, B.T.; Wang, L.; You, W.B.; Che, R.C. Hierarchical Ti3C2Tx MXene/carbon nanotubes hollow microsphere with confined magnetic nanospheres for broadband microwave absorption. Small 2022, 18, 2104380. [Google Scholar] [CrossRef]
- Liang, G.Y.; Han, F.; Ye, X.Y.; Meng, X.F. Hierarchical 0D/2D NiFe2O4/Ti3C2Tx MXene composites for boosting microwave absorption. Mater. Sci. Eng. B-Adv. 2023, 289, 116224. [Google Scholar] [CrossRef]
- Ni, Q.Q.; Zhu, Y.F.; Yu, L.J.; Fu, Y.Q. One-dimensional carbon nanotube@barium titanate@polyaniline multihet-erostructures for microwave absorbing application. Nanoscale Res. Lett. 2015, 10, 174. [Google Scholar] [CrossRef] [PubMed]
- Bai, Y.H.; Zhang, D.Y.; Lu, Y. Foamed concrete composites: Foamed concrete composites: Mn–Zn ferrite/carbon fiber synergy enhances electromagnetic wave absorption performance. Ceram. Int. 2023, 49, 33703–33716. [Google Scholar] [CrossRef]
- Guo, T.; Huang, B.; Li, C.G.; Lou, Y.M.; Tang, X.Z.; Huang, X.Z.; Yue, J.L. Magnetic sputtering of FeNi/C bilayer film on SiC fibers for effective microwave absorption in the low-frequency region. Ceram. Int. 2021, 47, 5221–5226. [Google Scholar] [CrossRef]
- Song, Y.; Zheng, J.; Liu, X.J.; Sun, M.; Zhao, S. Facile synthesis of BaTiO3 on multiwalled carbon nanotubes as a synergistic microwave absorber. J. Mater. Sci.-Mater. Electron. 2016, 27, 3390–3396. [Google Scholar] [CrossRef]
- Liao, Q.; He, M.; Zhou, Y.M.; Nie, S.X.; Wang, Y.J.; Hu, S.C.; Yang, H.Y.; Li, H.F.; Tong, Y. Highly cuboid-shaped heterobimetallic metal-organic frameworks derived from porous Co/ZnO/C microrods with improved electromagnetic wave absorption capabilities. ACS Appl. Mater. Interfaces 2018, 10, 29136–29144. [Google Scholar] [CrossRef]
- Du, B.Y.; Chai, L.F.; Li, W.; Wang, X.; Chen, X.H.; Zhou, J.H.; Sun, R.C. Preparation of functionalized magnetic graphene oxide/lignin composite nanoparticles for adsorption of heavy metal ions and reuse as electromagnetic wave absorbers. Sep. Purif. Technol. 2022, 297, 121509. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du, L.; Xu, R.; Si, Y.; Zhao, W.; Luo, H.; Jin, W.; Liu, D. Well-Dispersed CoNiO2 Nanosheet/CoNi Nanocrystal Arrays Anchored onto Monolayer MXene for Superior Electromagnetic Absorption at Low Frequencies. Coatings 2024, 14, 631. https://doi.org/10.3390/coatings14050631
Du L, Xu R, Si Y, Zhao W, Luo H, Jin W, Liu D. Well-Dispersed CoNiO2 Nanosheet/CoNi Nanocrystal Arrays Anchored onto Monolayer MXene for Superior Electromagnetic Absorption at Low Frequencies. Coatings. 2024; 14(5):631. https://doi.org/10.3390/coatings14050631
Chicago/Turabian StyleDu, Leiyu, Renxin Xu, Yunfa Si, Wei Zhao, Hongyi Luo, Wei Jin, and Dan Liu. 2024. "Well-Dispersed CoNiO2 Nanosheet/CoNi Nanocrystal Arrays Anchored onto Monolayer MXene for Superior Electromagnetic Absorption at Low Frequencies" Coatings 14, no. 5: 631. https://doi.org/10.3390/coatings14050631
APA StyleDu, L., Xu, R., Si, Y., Zhao, W., Luo, H., Jin, W., & Liu, D. (2024). Well-Dispersed CoNiO2 Nanosheet/CoNi Nanocrystal Arrays Anchored onto Monolayer MXene for Superior Electromagnetic Absorption at Low Frequencies. Coatings, 14(5), 631. https://doi.org/10.3390/coatings14050631