The Modelling of Light Absorption and Reflection in a SiOx/Si Structure with Al Nanoparticles for Solar Cells
Abstract
1. Introduction
2. The Calculation Method
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Singh, G.; Verma, S.S. Enhanced Efficiency of Thin Film GaAs Solar Cells with Plasmonic Metal Nanoparticles. Energy Sources Part A Recover. Util. Environ. Eff. 2018, 40, 155–162. [Google Scholar] [CrossRef]
- Singh, G.; Verma, S.S. Plasmon Enhanced Light Trapping in Thin Film GaAs Solar Cells by Al Nanoparticle Array. Phys. Lett. A 2019, 383, 1526–1530. [Google Scholar] [CrossRef]
- Havryliuk, O.O.; Evtukh, A.A.; Pylypova, O.V.; Semchuk, O.Y.; Ivanov, I.I.; Zabolotnyi, V.F. Plasmonic Enhancement of Light to Improve the Parameters of Solar Cells. Appl. Nanosci. 2020, 10, 4759–4766. [Google Scholar] [CrossRef]
- Pylypova, O.; Havryliuk, O.; Antonin, S.; Evtukh, A.; Skryshevsky, V.; Ivanov, I.; Shmahlii, S. Influence of Nanostructure Geometry on Light Trapping in Solar Cells. Appl. Nanosci. 2022, 12, 769–774. [Google Scholar] [CrossRef]
- Tanabe, I.; Shimizu, M.; Kawabata, R.; Katayama, C.; Fukui, K. Far- and Deep-Ultraviolet Surface Plasmon Resonance Using Al Film for Efficient Sensing of Organic Thin Overlayer. Sens. Actuators A Phys. 2020, 301, 111661. [Google Scholar] [CrossRef]
- Bikesh, S.; Ngangbam, C.; Singh, S.S.; Shougaijam, B. Structural and Optical Properties Analysis of Al Nanoparticle-Assisted SiOx Thin Film for Photodetector Application. Bull. Mater. Sci. 2022, 45, 216. [Google Scholar] [CrossRef]
- Bugaychuk, S.; Gridyakina, O.; Kurioz, Y.; Kredentser, S.; Mystetskyi, V.; Fedorenko, L.; Evtukh, A.; Kaupužs, J.; Onufrijevs, P. Laser Pulse Shape Transformation in Hybrid LC Cells Containing Gold Nano-Island Films. Mol. Cryst. Liq. Cryst. 2024, 768, 150–163. [Google Scholar] [CrossRef]
- Muhammad, M.H.; Hameed, M.F.O.; Obayya, S.S.A. Broadband Absorption Enhancement in Periodic Structure Plasmonic Solar Cell. Opt. Quantum Electron. 2015, 47, 1487–1494. [Google Scholar] [CrossRef]
- Arora, N.D.; Hauser, J.R. Antireflection Layers for GaAs Solar Cells. J. Appl. Phys. 1982, 53, 8839–8846. [Google Scholar] [CrossRef]
- Mahros, A.M.; Tharwat, M.M.; Ashry, I. Exploring the Impact of Rotating Rectangular Plasmonic Nano-Hole Arrays on the Transmission Spectra and Its Application as a Plasmonic Sensor. J. Eur. Opt. Soc. Publ. 2015, 10, 15023. [Google Scholar] [CrossRef]
- Kulesza, G.; Panek, P.; Zięba, P. Time Efficient Texturization of Multicrystalline Silicon in the HF/HNO3 Solutions and Its Effect on Optoelectronic Parameters of Solar Cells. Arch. Civ. Mech. Eng. 2014, 14, 595–601. [Google Scholar] [CrossRef]
- Munday, J.N.; Atwater, H.A. Large Integrated Absorption Enhancement in Plasmonic Solar Cells by Combining Metallic Gratings and Antireflection Coatings. Nano Lett. 2011, 11, 2195–2201. [Google Scholar] [CrossRef] [PubMed]
- Kalchmair, S.; Detz, H.; Cole, G.D.; Andrews, A.M.; Klang, P.; Nobile, M.; Gansch, R.; Ostermaier, C.; Schrenk, W.; Strasser, G. Photonic Crystal Slab Quantum Well Infrared Photodetector. Appl. Phys. Lett. 2011, 98, 011105. [Google Scholar] [CrossRef]
- Tharwat, M.M.; Mahros, A.M. Enhanced Plasmonic Absorber Based on a Hexagonal Annular Nano-Array and Impact of Imperfection. Mater. Express 2016, 6, 229–236. [Google Scholar] [CrossRef]
- Mahros, A.M.; Tharwat, M.M. Investigating the Fabrication Imperfections of Plasmonic Nanohole Arrays and Its Effect on the Optical Transmission Spectra. J. Nanomater. 2015, 2015, 178583. [Google Scholar] [CrossRef]
- Ashry, I.; Elrashidi, A.; Tharwat, M.M.; Xu, Y.; Mahros, A.M. Investigating the Optical Transmission Spectra of Plasmonic Spherical Nano-Hole Arrays. Plasmonics 2015, 10, 511–517. [Google Scholar] [CrossRef]
- Mahros, A.M.; Tharwat, M.M.; Elrashidi, A. Exploring the Impact of Nano-Particles Shape on the Performance of Plasmonic Based Fiber Optics Sensors. Plasmonics 2017, 12, 563–570. [Google Scholar] [CrossRef]
- Atwater, H.A.; Polman, A. Materials for Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group; World Scientific: Singapore, 2011. [Google Scholar]
- Kelly, K.L.; Coronado, E.; Zhao, L.L.; Schatz, G.C. The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment. J. Phys. Chem. B 2003, 107, 668–677. [Google Scholar] [CrossRef]
- Akimov, Y.A.; Koh, W.S. Resonant and Nonresonant Plasmonic Nanoparticle Enhancement for Thin-Film Silicon Solar Cells. Nanotechnology 2010, 21, 235201. [Google Scholar] [CrossRef]
- Akimov, Y.A.; Koh, W.S. Design of Plasmonic Nanoparticles for Efficient Subwavelength Light Trapping in Thin-Film Solar Cells. Plasmonics 2011, 6, 155–161. [Google Scholar] [CrossRef]
- Ambardar, S.; Nguyen, D.; Binder, G.; Withers, Z.W.; Voronine, D.V. Quantum Leap from Gold and Silver to Aluminum Nanoplasmonics for Enhanced Biomedical Applications. Appl. Sci. 2020, 10, 4210. [Google Scholar] [CrossRef]
- Krewski, D.; Yokel, R.A.; Nieboer, E.; Borchelt, D.; Cohen, J.; Harry, J.; Kacew, S.; Lindsay, J.; Mahfouz, A.M.; Rondeau, V. Human Health Risk Assessment for Aluminium, Aluminium Oxide, and Aluminium Hydroxide. J. Toxicol. Environ. Health Part B 2007, 10, 1–269. [Google Scholar] [CrossRef] [PubMed]
- Pylypova, O.V.; Evtukh, A.A.; Parfenyuk, P.V.; Ivanov, I.I.; Korobchuk, I.M.; Havryliuk, O.O.; Semchuk, O.Y. Electrical and Optical Properties of Nanowires Based Solar Cell with Radial P-n Junction. Opto-Electron. Rev. 2019, 27, 143–148. [Google Scholar] [CrossRef]
- Fan, X.; Zheng, W.; Singh, D.J. Light Scattering and Surface Plasmons on Small Spherical Particles. Light Sci. Appl. 2014, 3, e179. [Google Scholar] [CrossRef]
- Bollimuntha, R.C.; Hadi, M.F.; Piket-May, M.J.; Elsherbeni, A.Z. Dispersion Optimised Plane Wave Sources for Scattering Analysis with Integral Based High Order Finite Difference Time Domain Methods. IET Microw. Antennas Propag. 2016, 10, 976–982. [Google Scholar] [CrossRef]
- Capoglu, I.R.; Smith, G.S. A Total-Field/Scattered-Field Plane-Wave Source for the FDTD Analysis of Layered Media. IEEE Trans. Antennas Propag. 2008, 56, 158–169. [Google Scholar] [CrossRef]
- Stefanski, T.P.; Reichel, B. Analytical Expression for the Time-Domain Green’s Function of a Discrete Plane Wave Propagating in a 3-D FDTD Grid. IEEE Trans. Antennas Propag. 2017, 65, 3607–3614. [Google Scholar] [CrossRef]
- WATTS, M.E. Perfect Plane-Wave Injection into a Finite FDTD Domain through Teleportation of Fields. Electromagnetics 2003, 23, 187–201. [Google Scholar] [CrossRef]
- Tan, T.; Potter, M. Optimized Analytic Field Propagator (O-AFP) for Plane Wave Injection in FDTD Simulations. IEEE Trans. Antennas Propag. 2010, 58, 824–831. [Google Scholar] [CrossRef]
- Aspnes, D.E.; Studna, A.A. Dielectric Functions and Optical Parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 EV. Phys. Rev. B 1983, 27, 985–1009. [Google Scholar] [CrossRef]
- Rakić, A.D. Algorithm for the Determination of Intrinsic Optical Constants of Metal Films: Application to Aluminum. Appl. Opt. 1995, 34, 4755. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F. Fabrication of Al Nanostructure for Visible to Ultraviolet Plasmonics, Micro and Nanotechnologies/Microelectronics. Ph.D. Thesis, Universite de Troyes, Troyes, France, 2018. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaupužs, J.; Medvids, A.; Onufrijevs, P.; Fedorenko, L.; Evtukh, A. The Modelling of Light Absorption and Reflection in a SiOx/Si Structure with Al Nanoparticles for Solar Cells. Coatings 2024, 14, 1612. https://doi.org/10.3390/coatings14121612
Kaupužs J, Medvids A, Onufrijevs P, Fedorenko L, Evtukh A. The Modelling of Light Absorption and Reflection in a SiOx/Si Structure with Al Nanoparticles for Solar Cells. Coatings. 2024; 14(12):1612. https://doi.org/10.3390/coatings14121612
Chicago/Turabian StyleKaupužs, Jevgenijs, Arturs Medvids, Pavels Onufrijevs, Leonid Fedorenko, and Anatoliy Evtukh. 2024. "The Modelling of Light Absorption and Reflection in a SiOx/Si Structure with Al Nanoparticles for Solar Cells" Coatings 14, no. 12: 1612. https://doi.org/10.3390/coatings14121612
APA StyleKaupužs, J., Medvids, A., Onufrijevs, P., Fedorenko, L., & Evtukh, A. (2024). The Modelling of Light Absorption and Reflection in a SiOx/Si Structure with Al Nanoparticles for Solar Cells. Coatings, 14(12), 1612. https://doi.org/10.3390/coatings14121612