Verification of Optimal X-Ray Shielding Properties Based on Material Composition and Coating Design of Shielding Materials
Abstract
1. Introduction
2. Methods and Materials
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Boice, J., Jr.; Dauer, L.T.; Kase, K.R.; Mettler, F.A., Jr.; Vetter, R.J. Evolution of radiation protection for medical workers. Br. J. Radiol. 2020, 93, 20200282. [Google Scholar] [CrossRef] [PubMed]
- Abualroos, N.J.; Baharul Amin, N.A.B.; Zainon, R. Conventional and new lead-free radiation shielding materials for radiation protection in nuclear medicine: A review. Radiat. Phys. Chem. 2019, 165, 108439. [Google Scholar] [CrossRef]
- Boeykens, S.P.; Redondo, N.; Obeso, R.A.; Caracciolo, N.; Vázquez, C. Chromium and Lead adsorption by avocado seed biomass study through the use of Total Reflection X-ray fluorescence analysis. Appl. Radiat. Isot. 2019, 153, 108809. [Google Scholar] [CrossRef]
- de Souza, A.C.; Aristone, F.; Gouvea, A.F.G.; Fernandes, H.B.; Miyai, A.; Rossi, J. Characterization and measurement of gamma radiation shielding of a new tungsten-lignin composite. J. Compos. Mater. 2021, 55, 3579–3588. [Google Scholar] [CrossRef]
- Palanisami, S.; Dhandapani, V.S.; Jayachandran, V.; Muniappan, E.; Park, D.; Kim, B.; Govindasami, K. Investigation on physico chemical and X-ray shielding performance of zinc doped nano-WO3 epoxy composite for light weight lead free aprons. Materials 2023, 16, 3866. [Google Scholar] [CrossRef]
- Kepezhinskas, P.; Berdnikov, N.; Konovalova, N.; Kepezhinskas, N.; Krutikova, V.; Kirichenko, E. Native metals and alloys in trachytes and Shoshonite from the continental United States and high-K dacite from the Bolivian Andes: Magmatic origins of ore metals in convergent and within-plate tectonic settings. Russ. J. Pac. Geol. 2022, 16, 405–426. [Google Scholar] [CrossRef]
- Kim, H.; Lim, J.; Kim, J.; Lee, J.; Seo, Y. Multilayer structuring of nonleaded metal (BiSn)/polymer/tungsten composites for enhanced γ-ray shielding. Adv. Eng. Mater. 2020, 22, 1901448. [Google Scholar] [CrossRef]
- Kalkornsurapranee, E.; Kothan, S.; Intom, S.; Johns, J.; Kaewjaeng, S.; Kedkaew, C.; Chaiphaksa, W.; Sareein, T.; Kaewkhao, J. Wearable and flexible radiation shielding natural rubber composites: Effect of different radiation shielding fillers. Radiat. Phys. Chem. 2021, 179, 109261. [Google Scholar] [CrossRef]
- Okafor, C.E.; Okonkwo, U.C.; Okokpujie, I.P. Trends in reinforced composite design for ionizing radiation shielding applications: A review. J. Mater. Sci. 2021, 56, 11631–11655. [Google Scholar] [CrossRef]
- Li, Z.; Zhou, W.; Zhang, X.; Gao, Y.; Guo, S. High-efficiency, flexibility and lead-free X-ray shielding multilayered polymer composites: Layered structure design and shielding mechanism. Sci. Rep. 2021, 11, 4384. [Google Scholar] [CrossRef]
- Almurayshid, M.; Alsagabi, S.; Alssalim, Y.; Alotaibi, Z.; Almsalam, R. Feasibility of polymer-based composite materials as radiation shield. Radiat. Phys. Chem. 2021, 183, 109425. [Google Scholar] [CrossRef]
- Arif Sazali, M.; Alang Md Rashid, N.K.; Hamzah, K. A review on multilayer radiation shielding. IOP Conf. Ser. Mater. Sci. Eng. 2019, 555, 012008. [Google Scholar] [CrossRef]
- Hussein, K.I.; Alqahtani, M.S.; Grelowska, I.; Reben, M.; Afifi, H.; Zahran, H.; Yaha, I.S.; Yousef, E.S. Optically transparent glass modified with metal oxides for X-rays and gamma rays shielding material. J. X-Ray Sci. Technol. 2021, 29, 331–345. [Google Scholar] [CrossRef]
- Li, Q.; Wei, Q.; Zheng, W.; Zheng, Y.; Okosi, N.; Wang, Z.; Su, M. Enhanced radiation shielding with conformal light-weight nanoparticle–polymer composite. ACS Appl. Mater. Interfaces 2018, 10, 35510–35515. [Google Scholar] [CrossRef] [PubMed]
- Gholamzadeh, L.; Asari-Shik, N.; Aminian, M.K.; Ghasemi-Nejad, M. A study of the shielding performance of fibers coated with high-Z oxides against ionizing radiations. Nucl. Instrum. Method Phys. Res. Sect. A 2020, 973, 164174. [Google Scholar] [CrossRef]
- More, C.V.; Alsayed, Z.; Badawi, M.S.; Thabet, A.A.; Pawar, P.P. Polymeric composite materials for radiation shielding: A review. Environ. Chem. Lett. 2021, 19, 2057–2090. [Google Scholar] [CrossRef]
- Guo-hui, W.; Man-li, H.; Fan-chao, C.; Jun-dong, F.; Yao-dong, D. Enhancement of flame retardancy and radiation shielding properties of ethylene vinyl acetate based radiation shielding composites by EB irradiation. Prog. Nucl. Energy 2019, 112, 225–232. [Google Scholar] [CrossRef]
- Liang, D.; Shen, F.; Bao, Z.; Liu, Y.; Li, H. Research on textile materials for X-ray shielding. E3S Web Conf. 2021, 290, 01013. [Google Scholar] [CrossRef]
- Wasel, O.; Freeman, J.L. Comparative assessment of tungsten toxicity in the absence or presence of other metals. Toxics 2018, 6, 66. [Google Scholar] [CrossRef]
- Iwamiya, Y.; Kawai, M. Tungsten-coated cloth for radiation shielding made with the SilicaTech® coating technique. In Proceedings of the 14th International Workshop on Spallation Materials Technology (JAPAN), Fukushima, Japan, 11–16 November 2020. [Google Scholar] [CrossRef]
- Agar, O.; Sayyed, M.I.; Akman, F.; Tekin, H.O.; Kaçal, M.R. An extensive investigation on gamma ray shielding features of Pd/Ag-based alloys. Nucl. Eng. Technol. 2019, 51, 853–859. [Google Scholar] [CrossRef]
- Akman, F.; Kaçal, M.R.; Sayyed, M.I.; Karataş, H.A. Study of gamma radiation attenuation properties of some selected ternary alloys. J. Alloys Compd. 2019, 782, 315–322. [Google Scholar] [CrossRef]
- Oshina, I.; Spigulis, J. Beer–Lambert law for optical tissue diagnostics: Current state of the art and the main limitations. J. Biomed. Opt. 2021, 26, 100901. [Google Scholar] [CrossRef]
- Özpolat, Ö.F.; Alım, B.; Şakar, E.; Büyükyıldız, M.; Kurudirek, M. Phy-X/ZeXTRa: A software for robust calculation of effective atomic numbers for photon, electron, proton, alpha particle, and carbon ion interactions. Radiat. Environ. Biophys. 2020, 59, 321–329. [Google Scholar] [CrossRef]
- Kaur, B.; Rani, N.; Vermani, Y.K.; Singh, T. Assigning effective atomic number and electron density for some lanthanide oxides over wide gamma-rays energies. AIP Conf. Proc. 2019, 2142, 120005. [Google Scholar] [CrossRef]
- Kılıçoğlu, Ö. An investigation on effective atomic numbers and mass attenuation coefficients of some bioactive glasses. Eur. J. Sci. Technol. 2019, 15, 168–175. [Google Scholar] [CrossRef]
- D’Souza, A.N.; Prabhu, N.S.; Sharmila, K.; Sayyed, M.I.; Somshekarappa, H.M.; Lakshminarayana, G.; Mandal, S.; Kamath, S.D. Role of Bi2O3 in altering the structural, optical, mechanical, radiation shielding and thermoluminescence properties of heavy metal oxide borosilicate glasses. J. Non-Cryst. Solids 2020, 542, 120136. [Google Scholar] [CrossRef]
- Safari, A.; Rafie, P.; Taeb, S.; Najafi, M.; Mortazavi, S.M.J. Development of lead-free materials for radiation shielding in medical settings: A review. J. Biomed. Phys. Eng. 2024, 14, 229–244. [Google Scholar] [CrossRef] [PubMed]
- Thumwong, A.; Chinnawet, M.; Intarasena, P.; Rattanapongs, C.; Tokonami, S.; Ishikawa, T.; Saenboonruang, K. A comparative study on X-ray shielding and mechanical properties of natural rubber latex nanocomposites containing Bi2O3 or BaSO4: Experimental and numerical determination. Polymers 2022, 14, 3654. [Google Scholar] [CrossRef]
- E, J.J.; Panneerselvam, K. Investigation on the influence of tungsten particulate in mechanical and thermal properties of HD50MA180 high density polyethylene composites. Mater. Res. Express 2020, 7, 045306. [Google Scholar] [CrossRef]
- Obeid, A.; El, B.H.; El, S.O.; Alsayed, Z.; Awad, R.; Badawi, M.S. Effects of different nano size and bulk WO3 enriched by HDPE composites on attenuation of the X-ray narrow spectrum. Nucl. Technol. Radiat. Prot. 2021, 36, 315–328. [Google Scholar] [CrossRef]
- Abdolahzadeh, T.; Morshedian, J.; Ahmadi, S. Preparation and characterization of nano WO3/Bi2O3/GO and BaSO4/GO dispersed HDPE composites for X-ray shielding application. Polyolefins J. 2022, 9, 73–83. [Google Scholar] [CrossRef]
- Liang, X.; Gao, G.; Wu, G. Statistical analysis on hollow and core-shell structured vanadium oxide microspheres as cathode materials for lithium ion batteries. Data Brief 2018, 18, 719–722. [Google Scholar] [CrossRef] [PubMed]
- Korean Standards Association. Testing Method of Lead Equivalent for X-Ray Protective Devices; Korean Standards Association: Seoul, Republic of Korea, 2017; Volume 17, p. 4025. [Google Scholar]
- ALMisned, G.; Akman, F.; AbuShanab, W.S.; Tekin, H.O.; Kaçal, M.R.; Issa, S.A.M.; Polat, H.; Oltulu, M.; Ene, A.; Zakaly, H.M.H. Novel Cu/Zn Reinforced Polymer Composites: Experimental Characterization for Radiation Protection Efficiency (RPE) and Shielding Properties for Alpha, Proton, Neutron, and Gamma Radiations. Polymers 2021, 13, 3157. [Google Scholar] [CrossRef]
- Zhang, H.; Lin, S. Research progress with membrane shielding materials for electromagnetic/radiation contamination. Membranes 2023, 13, 315. [Google Scholar] [CrossRef]
- Vignesh, S.; Winowlin Jappes, J.T.; Nagaveena, S.; Krishna Sharma, R.; Adam Khan, M.; More, C.V.; Rajini, N.; Varol, T. Development of lightweight polymer laminates for radiation shielding and electronics applications. Int. J. Polym. Sci. 2022, 2022, 5252528. [Google Scholar] [CrossRef]
- Budumuru, S.; Rao, S.S.; Jenjeti, D.; Suri Apparao, T.V. Shielding effectiveness of multilayer laminate of aluminum metal matrix and micro absorbing materials. MethodsX 2023, 10, 102172. [Google Scholar] [CrossRef] [PubMed]
- Liang, C.; Gu, Z.; Zhang, Y.; Ma, Z.; Qiu, H.; Gu, J. Structural design strategies of polymer matrix composites for electromagnetic interference shielding: A review. Nanomicro Lett. 2021, 13, 181. [Google Scholar] [CrossRef]
- Gilys, L.; Griškonis, E.; Griškevičius, P.; Adlienė, D. Lead free multilayered polymer composites for radiation shielding. Polymers 2022, 14, 1696. [Google Scholar] [CrossRef]
- Fan, W.C.; Drumm, C.R.; Roeske, S.B.; Scrivner, G.J. Shielding considerations for satellite microelectronics. IEEE Trans. Nucl. Sci. 1996, 43, 2790–2796. [Google Scholar] [CrossRef]
- Klamm, B. Passive space radiation shielding: Mass and volume optimization of tungsten-doped polyphenolic and polyethylene resins. In Proceedings of the 29th Annual AIAA/USU Conference on Small Satellites, Logan, UT, USA, 8–13 August 2015. [Google Scholar]
- Li, X.; Warden, D.; Bayazitoglu, Y. Analysis to evaluate multilayer shielding of galactic cosmic rays. J. Thermophys. Heat Transf. 2018, 32, 525–531. [Google Scholar] [CrossRef]
- Chang, Q.; Guo, S.; Zhang, X. Radiation shielding polymer composites: Ray-interaction mechanism, structural design, manufacture and biomedical applications. Mater. Des. 2023, 233, 112253. [Google Scholar] [CrossRef]
Sheet Types | Weight (kg/m2) | Thickness (mm) | Density (g/cm3) |
---|---|---|---|
Barium sulfate (BaSO4) | 3.1 ± 0.039 | 0.3 ± 0.010 | 10.333 ± 0.010 |
Bismuth oxide (Bi2O3) | 2.9 ± 0.030 | 0.3 ± 0.011 | 9.667 ± 0.021 |
Tungsten oxide (WO3) | 2.7 ± 0.051 | 0.3 ± 0.012 | 9.766 ± 0.025 |
Array sheet (three sheets) | 9.4 ± 0.011 | 1.1 ± 0.051 | 8.545 ± 0.032 |
Mixed sheets (one sheet) | 8.6 ± 0.013 | 0.9 ± 0.012 | 9.556 ± 0.031 |
RPE (%) ± SD (%) | |||||
---|---|---|---|---|---|
X-Ray Tube Voltage (kVp) | Lead | W/Bi/Ba | Ba/Bi/W | Bi/W/Ba | Ba/W/Bi |
40 | 100 ± 0.2 | 96 ± 0.1 | 91 ± 0.0 | 91 ± 0.2 | 90 ± 0.0 |
60 | 98 ± 0.0 | 93 ± 0.2 | 88 ± 0.2 | 89 ± 0.0 | 88 ± 0.3 |
80 | 95 ± 0.0 | 89 ± 0.0 | 85 ± 0.0 | 84 ± 0.1 | 84 ± 0.1 |
100 | 94 ± 0.1 | 85 ± 0.0 | 80 ± 0.0 | 78 ± 0.1 | 78 ± 0.1 |
120 | 91 ± 0.0 | 82 ± 0.2 | 78 ± 0.3 | 75 ± 0.0 | 76 ± 0.2 |
RPE (%) | |||||
---|---|---|---|---|---|
Tube Voltage (kVp) | W | Bi | Ba | Mixed Sheet | Lead |
W/Bi/Ba | |||||
40 | 96 ± 0.2 | 85 ± 0.1 | 78 ± 0.0 | 92 ± 0.1 | 100 ± 0.0 |
60 | 95 ± 0.0 | 82 ± 0.0 | 75 ± 0.0 | 88 ± 0.2 | 98 ± 0.2 |
80 | 92 ± 0.1 | 78 ± 0.1 | 70 ± 0.2 | 84 ± 0.1 | 95 ± 0.1 |
100 | 91 ± 0.0 | 75 ± 0.1 | 68 ± 0.0 | 80 ± 0.0 | 94 ± 0.1 |
120 | 90 ± 0.2 | 70 ± 0.0 | 60 ± 0.1 | 74 ± 0.0 | 91 ± 0.0 |
RPE (%) | |||
---|---|---|---|
Tube Voltage (kVp) | Mixed Sheet | Single Material Sheets | Lead |
40 | 94 ± 0.0 | 96 ± 0.1 | 100 ± 0.2 |
60 | 90 ± 0.1 | 93 ± 0.0 | 98 ± 0.0 |
80 | 87 ± 0.1 | 89 ± 0.1 | 95 ± 0.0 |
100 | 85 ± 0.2 | 85 ± 0.0 | 94 ± 0.1 |
120 | 84 ± 0.0 | 82 ± 0.0 | 91 ± 0.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, S.-C.; Yun, J.-H.; Byun, H.-S.; Hou, J. Verification of Optimal X-Ray Shielding Properties Based on Material Composition and Coating Design of Shielding Materials. Coatings 2024, 14, 1450. https://doi.org/10.3390/coatings14111450
Kim S-C, Yun J-H, Byun H-S, Hou J. Verification of Optimal X-Ray Shielding Properties Based on Material Composition and Coating Design of Shielding Materials. Coatings. 2024; 14(11):1450. https://doi.org/10.3390/coatings14111450
Chicago/Turabian StyleKim, Seon-Chil, Jae-Han Yun, Hong-Sik Byun, and Jian Hou. 2024. "Verification of Optimal X-Ray Shielding Properties Based on Material Composition and Coating Design of Shielding Materials" Coatings 14, no. 11: 1450. https://doi.org/10.3390/coatings14111450
APA StyleKim, S.-C., Yun, J.-H., Byun, H.-S., & Hou, J. (2024). Verification of Optimal X-Ray Shielding Properties Based on Material Composition and Coating Design of Shielding Materials. Coatings, 14(11), 1450. https://doi.org/10.3390/coatings14111450