Dependence of Electrical Charge Transport on the Voltage Applied across Metal–Graphene–Metal Stack under Fixed Compressing Force
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Electrical Current Characteristics of M-G-M System
3.2. Detach Force as an Indication of Charge Distribution Changes
3.3. Electrical Current Changes Retracting the SPM Probe from the Surface
3.4. Fermi Level Pinning in Charge Transport Model
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhirnov, V.V.; Meade, R.; Cavin, R.K.; Sandhu, G. Scaling Limits of Resistive Memories. Nanotechnology 2011, 22, 254027. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Zhang, Y.; Fu, Z.-Q.; Chen, Y.; Di, Z.; He, L. Creating Custom-Designed Patterns of Nanoscale Graphene Quantum Dots. 2D Mater. 2022, 9, 021002. [Google Scholar] [CrossRef]
- Zhao, X.; Zhang, X.; Chen, R.; Lang, H.; Peng, Y. Flexible Tuning of Friction on Atomically Thin Graphene. ACS Appl. Mater. Interfaces 2023, 15, 10315–10323. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Weiss, N.O.; Duan, X.; Cheng, H.-C.; Huang, Y.; Duan, X. Van Der Waals Heterostructures and Devices. Nat. Rev. Mater. 2016, 1, 16042. [Google Scholar] [CrossRef]
- Yang, M.; Liu, Y.; Fan, T.; Zhang, D. Metal-Graphene Interfaces in Epitaxial and Bulk Systems: A Review. Prog. Mater. Sci. 2020, 110, 100652. [Google Scholar] [CrossRef]
- Gong, C.; Lee, G.; Shan, B.; Vogel, E.M.; Wallace, R.M.; Cho, K. First-Principles Study of Metal–Graphene Interfaces. J. Appl. Phys. 2010, 108, 123711. [Google Scholar] [CrossRef]
- Khomyakov, P.A.; Giovannetti, G.; Rusu, P.C.; Brocks, G.; van den Brink, J.; Kelly, P.J. First-Principles Study of the Interaction and Charge Transfer between Graphene and Metals. Phys. Rev. B 2009, 79, 195425. [Google Scholar] [CrossRef]
- Chaves, F.A.; Jiménez, D.; Cummings, A.W.; Roche, S. Physical Model of the Contact Resistivity of Metal-Graphene Junctions. J. Appl. Phys. 2014, 115, 164513. [Google Scholar] [CrossRef]
- Passi, V.; Gahoi, A.; Marin, E.G.; Cusati, T.; Fortunelli, A.; Iannaccone, G.; Fiori, G.; Lemme, M.C. Ultralow Specific Contact Resistivity in Metal–Graphene Junctions via Contact Engineering. Adv. Mater. Interfaces 2019, 6, 1801285. [Google Scholar] [CrossRef]
- Song, A.; Shi, R.; Lu, H.; Gao, L.; Li, Q.; Guo, H.; Liu, Y.; Zhang, J.; Ma, Y.; Tang, X.; et al. Modeling Atomic-Scale Electrical Contact Quality Across Two-Dimensional Interfaces. Nano Lett. 2019, 19, 3654–3662. [Google Scholar] [CrossRef] [PubMed]
- Yoon, H.H.; Ahmed, F.; Dai, Y.; Fernandez, H.A.; Cui, X.; Bai, X.; Li, D.; Du, M.; Lipsanen, H.; Sun, Z. Tunable Quantum Tunneling through a Graphene/Bi2Se3 Heterointerface for the Hybrid Photodetection Mechanism. ACS Appl. Mater. Interfaces 2021, 13, 58927–58935. [Google Scholar] [CrossRef] [PubMed]
- Papadopoulos, N.; Gehring, P.; Watanabe, K.; Taniguchi, T.; van der Zant, H.S.J.; Steele, G.A. Tunneling Spectroscopy of Localized States of WS2 Barriers in Vertical van Der Waals Heterostructures. Phys. Rev. B 2020, 101, 165303. [Google Scholar] [CrossRef]
- Iordanidou, K.; Mitra, R.; Shetty, N.; Lara-Avila, S.; Dash, S.; Kubatkin, S.; Wiktor, J. Electric Field and Strain Tuning of 2D Semiconductor van Der Waals Heterostructures for Tunnel Field-Effect Transistors. ACS Appl. Mater. Interfaces 2023, 15, 1762–1771. [Google Scholar] [CrossRef] [PubMed]
- Gong, C.; Hinojos, D.; Wang, W.; Nijem, N.; Shan, B.; Wallace, R.M.; Cho, K.; Chabal, Y.J. Metal–Graphene–Metal Sandwich Contacts for Enhanced Interface Bonding and Work Function Control. ACS Nano 2012, 6, 5381–5387. [Google Scholar] [CrossRef]
- Vanin, M.; Mortensen, J.J.; Kelkkanen, A.K.; Garcia-Lastra, J.M.; Thygesen, K.S.; Jacobsen, K.W. Graphene on Metals: A van Der Waals Density Functional Study. Phys. Rev. B 2010, 81, 081408. [Google Scholar] [CrossRef]
- Nam Do, V.; Anh Le, H. Transport Characteristics of Graphene-Metal Interfaces. Appl. Phys. Lett. 2012, 101, 161605. [Google Scholar] [CrossRef]
- Sakavičius, A.; Agafonov, V.; Bukauskas, V.; Daugalas, T.; Kamarauskas, M.; Lukša, A.; Nargelienė, V.; Niaura, G.; Treideris, M.; Šetkus, A. Long-Time Drift Induced Changes in Electrical Characteristics of Graphene–Metal Contacts. Lith. J. Phys. 2020, 60, 235–246. [Google Scholar] [CrossRef]
- Babcock, K.L.; Prater, C.B. Phase Imaging: Beyond Topography; Digit Instruments: St. Barbar, CA, USA, 1995. [Google Scholar]
- Daugalas, T.; Bukauskas, V.; Lukša, A.; Nargelienė, V.; Šetkus, A. Intentionally Created Localized Bridges for Electron Transport through Graphene Monolayer between Two Metals. Nanotechnology 2022, 33, 375402. [Google Scholar] [CrossRef]
- Daugalas, T.; Bukauskas, V.; Lukša, A.; Nargelienė, V.; Šetkus, A. Relationship between Changes in Interface Characteristics and External Voltage under Compressing Force in Metal–Graphene–Metal Stacks. J. Phys. D Appl. Phys. 2023, 56, 345305. [Google Scholar] [CrossRef]
- Zhang, P.; Li, J.-T.; Meng, J.-W.; Jiang, A.-Q.; Zhuang, J.; Ning, X.-J. Conductivity of Graphene Affected by Metal Adatoms. AIP Adv. 2017, 7, 035101. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Daugalas, T.; Bukauskas, V.; Lukša, A.; Nargelienė, V.; Šetkus, A. Dependence of Electrical Charge Transport on the Voltage Applied across Metal–Graphene–Metal Stack under Fixed Compressing Force. Coatings 2023, 13, 1522. https://doi.org/10.3390/coatings13091522
Daugalas T, Bukauskas V, Lukša A, Nargelienė V, Šetkus A. Dependence of Electrical Charge Transport on the Voltage Applied across Metal–Graphene–Metal Stack under Fixed Compressing Force. Coatings. 2023; 13(9):1522. https://doi.org/10.3390/coatings13091522
Chicago/Turabian StyleDaugalas, Tomas, Virginijus Bukauskas, Algimantas Lukša, Viktorija Nargelienė, and Arūnas Šetkus. 2023. "Dependence of Electrical Charge Transport on the Voltage Applied across Metal–Graphene–Metal Stack under Fixed Compressing Force" Coatings 13, no. 9: 1522. https://doi.org/10.3390/coatings13091522
APA StyleDaugalas, T., Bukauskas, V., Lukša, A., Nargelienė, V., & Šetkus, A. (2023). Dependence of Electrical Charge Transport on the Voltage Applied across Metal–Graphene–Metal Stack under Fixed Compressing Force. Coatings, 13(9), 1522. https://doi.org/10.3390/coatings13091522