Ultrathin Narrowband and Bidirectional Perfect Metasurface Absorber
Abstract
1. Introduction
2. Structure Design, Simulation, and Experiment
3. Results and Discussions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sun, S.; He, Q.; Hao, J.; Xiao, S.; Zhou, L. Electromagnetic metasurfaces: Physics and applications. Adv. Opt. Photonics 2019, 11, 380–479. [Google Scholar] [CrossRef]
- Pendry, J. Negative Refraction Makes a Perfect Lens. Phys. Rev. Lett. 2000, 85, 3966–3969. [Google Scholar] [CrossRef] [PubMed]
- Fang, N.; Lee, H.; Sun, C.; Zhang, X. Sub-Diffraction-Limited Optical Imaging with a Silver Superlens. Science 2005, 308, 534–537. [Google Scholar] [CrossRef] [PubMed]
- Walter, F.; Li, G.; Meier, C.; Zhang, S.; Zentgraf, T. Ultrathin Nonlinear Metasurface for Optical Image Encoding. Nano Lett. 2017, 17, 3171–3175. [Google Scholar] [CrossRef]
- Shah, Y.; Grant, J.; Hao, D.; Kenney, M.; Pusino, V.; Cumming, D. Ultra-narrow Line Width Polarization-Insensitive Filter Using a Symmetry-Breaking Selective Plasmonic Metasurface. ACS Photonics 2018, 5, 663–669. [Google Scholar] [CrossRef]
- Sun, S.; Cheng, Y.; Luo, H.; Chen, F.; Li, X. Notched-wideband Bandpass Filter Based on Spoof Surface Plasmon Polaritons Loaded with Resonator Structure. Plasmonics 2023, 18, 165–174. [Google Scholar] [CrossRef]
- Li, J.; Cheng, Y.; Fan, J.; Chen, F.; Luo, H.; Li, X. High-efficiency terahertz full-space metasurface for the transmission linear and reflection circular polarization wavefront manipulation. Phys. Lett. A 2022, 428, 127932. [Google Scholar] [CrossRef]
- Yang, D.; Cheng, Y.; Luo, H.; Chen, F.; Wu, L. Ultrathin and Ultra-Broadband Terahertz Single-Layer Metasurface Based on Double-Arrow-Shaped Resonator Structure for Full-Space Wavefront Manipulation. Adv. Theory Simul. 2023, 6, 2300162. [Google Scholar] [CrossRef]
- Xu, Z.; Ni, C.; Cheng, Y.; Dong, L.; Wu, L. Photo-excited metasurface for tunable terahertz reflective circular polarization conversion and anomalous beam deflection at two frequencies independently. Nanomaterials 2023, 13, 1846. [Google Scholar] [CrossRef] [PubMed]
- Pu, Q.; Cheng, Z.; Ni, C.; Wu, L.; Cheng, Y. Broadband all-metal reflective-mode geometric metasurfaces for visible multi-functional wavefront manipulation. Phys. B Condens. Matter 2023, 666, 415097. [Google Scholar] [CrossRef]
- Panchenko, E.; Cadusch, J.; James, T.; Roberts, A. Plasmonic Metasurface-Enabled Differential Photodetectors for Broadband Optical Polarization Characterization. ACS Photonics 2016, 3, 1833–1839. [Google Scholar] [CrossRef]
- Cheng, Y.; Chen, F.; Luo, H. Triple-Band Perfect Light Absorber Based on Hybrid Metasurface for Sensing Application. Nanoscale Res. Lett. 2020, 15, 103. [Google Scholar] [CrossRef]
- Zhao, J.; Li, N.; Cheng, Y. All-dielectric InSb metasurface for broadband and high-efficient thermal tunable terahertz reflective linear-polarization conversion. Opt. Commun. 2023, 536, 129372. [Google Scholar] [CrossRef]
- Li, N.; Zhao, J.; Tang, P.; Cheng, Y. Design of all-Metal 3D anisotropic metamaterial for ultrabroadband terahertz reflective linear polarization conversion. Phys. Status Solidi B 2023, 260, 2300104. [Google Scholar] [CrossRef]
- Zhao, J.; Li, N.; Cheng, Y. Ultrabroadband chiral metasurface for linear polarization conversion and asymmetric transmission based on enhanced interference theory. Chin. Opt. Lett. 2023, 21, 113602. [Google Scholar]
- Landy, N.I.; Sajuyigbe, S.; Mock, J.J.; Smith, D.R.; Padilla, W.J. Perfect metamaterial absorber. Phys. Rev. Lett. 2008, 100, 207402. [Google Scholar] [CrossRef] [PubMed]
- Watts, C.M.; Liu, X.; Padilla, W.J. Metamaterial electromagnetic wave absorbers. Adv. Mater. 2012, 24, 98–120. [Google Scholar] [CrossRef] [PubMed]
- Yu, P.; Besteiro, L.V.; Huang, Y.; Wu, J.; Fu, L.; Tan, H.H.; Jagadish, C.; Wiederrecht, G.P.; Govorov, A.O.; Wang, Z. Broadband metamaterial absorbers. Adv. Opt. Mater. 2018, 7, 1800995. [Google Scholar] [CrossRef]
- Yousaf, A.; Murtaza, M.; Wakeel, A. A highly efficient low-profile tetra-band metasurface absorber for X, Ku, and K band applications. Int. J. Electron. Commun. (AEÜ) 2022, 154, 154329. [Google Scholar] [CrossRef]
- Cheng, Y.; Zhao, J. Simple design of a six-band terahertz perfect metasurface absorber based on a single resonator structure. Phys. Scr. 2022, 97, 095508. [Google Scholar] [CrossRef]
- Dong, W.; Ruifang, L.; Yumin, L.; Zhongyuan, Y.; Lei, C.; Chang, L.; Rui, M.; Han, Y. Ultra-narrow band perfect absorber and its application as plasmonic sensor in the visible region. Nanoscale Res. Lett. 2017, 12, 427. [Google Scholar]
- Zhang, H.; Cheng, Y.; Chen, F. Quad-band plasmonic perfect absorber using all-metal nanostructure metasurface for refractive index sensing. Optik 2021, 229, 166300. [Google Scholar] [CrossRef]
- Li, J.; Hu, G.; Shi, L.; He, N.; Li, D.; Shang, Q.; Zhang, Q.; Fu, H.; Zhou, L.; Xiong, W.; et al. Full-color enhanced second harmonic generation using rainbow trapping in ultrathin hyperbolic metamaterials. Nat. Commun. 2021, 12, 6425. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Cheng, Y. Temperature-Tunable Terahertz Perfect Absorber Based on All-Dielectric Strontium Titanate (STO) Resonator Structure. Adv. Theory Simul. 2022, 5, 2200520. [Google Scholar] [CrossRef]
- Lai, R.; Shi, P.; Yi, Z.; Li, H.; Yi, Y. Triple-Band Surface Plasmon Resonance Metamaterial Absorber Based on Open-Ended Prohibited Sign Type Monolayer Graphene. Micromachines 2023, 14, 953. [Google Scholar] [CrossRef]
- Cheng, Y.; Qian, Y.; Luo, H.; Chen, F.; Cheng, Z. Terahertz Narrowband Perfect Metasurface Absorber Based on Micro-Ring-Shaped GaAs Array for Enhanced Refractive Index Sensing. Physica E 2023, 146, 115527. [Google Scholar] [CrossRef]
- Li, L.; Zhang, X.; Song, C.; Huang, Y. Progress, Challenges, and Perspective on Metasurfaces for Ambient Radio Frequency Energy Harvesting. Appl. Phys. Lett. 2020, 116, 060501. [Google Scholar] [CrossRef]
- Ma, Y.; Shi, L.; Wang, J.; Zhu, L.; Ran, Y.; Liu, Y.; Li, J. A Transparent and Flexible Metasurface with Both Low Infrared Emission and Broadband Microwave Absorption. J. Mater. Sci. Mater. Electron. 2021, 32, 2001–2010. [Google Scholar] [CrossRef]
- Quan, C.; Zou, J.; Guo, C.; Xu, W.; Zhu, Z.; Zhang, J. High-Temperature Resistant Broadband Infrared Stealth Metamaterial Absorber. Opt. Laser Technol. 2022, 156, 108579. [Google Scholar] [CrossRef]
- Zhu, H.; Wang, K.; Liu, G.; Mou, J.; Wu, Y.; Zhang, Z.; Qiu, Y.; Wei, G. Metasurface Absorber with Ultra-Thin Thickness Designed for a Terahertz Focal Plane Array Detector. Opt. Express 2022, 30, 15939–15950. [Google Scholar] [CrossRef]
- Wang, Y.; Zhu, D.Y.; Cui, Z.J.; Yue, L.S.; Zhang, X.; Hou, L.; Zhang, K.; Hu, H. Properties and Sensing Performance of All-Dielectric Metasurface THz Absorbers. IEEE Trans. Terahertz Sci. Technol. 2020, 10, 599–605. [Google Scholar] [CrossRef]
- Li, Z.; Cheng, Y.; Luo, H.; Chen, F.; Li, X. Dual-Band Tunable Terahertz Perfect Absorber Based on All-Dielectric InSb Resonator Structure for Sensing Application. J. Alloys Compd. 2022, 925, 166617. [Google Scholar] [CrossRef]
- Ouyang, L.; Wang, W.; Rosenmann, D.; Czaplewski, D.A.; Gao, J.; Yang, X. Near-Infrared Chiral Plasmonic Metasurface Absorbers. Opt. Express 2018, 26, 31484–31489. [Google Scholar] [CrossRef] [PubMed]
- Kalraiya, S.; Chaudhary, R.K.; Abdalla, M.A.; Gangwar, R.K. Polarization and Incident Angle Independent Metasurface Absorber for X Band Application. Mater. Res. Express 2019, 6, 045802. [Google Scholar] [CrossRef]
- Wang, Q.; Cheng, Y. Compact and Low-Frequency Broadband Microwave Metamaterial Absorber Based on Meander Wire Structure Loaded Resistors. Int. J. Electron. Commun. (AEÜ) 2020, 120, 153198. [Google Scholar] [CrossRef]
- Tamim, A.M.; Hasan, M.M.; Faruque, M.R.I.; Islam, M.T.; Nebhen, J. Polarization-independent symmetrical digital metasurface absorber. Results Phys. 2021, 24, 103985. [Google Scholar] [CrossRef]
- Liang, Y.; Liu, X.; Xin, J.; Zhang, X.; Wang, Y.; Song, Y. Ultra-broadband long-wave infrared metasurface absorber based on Peano fractal curve. Results Phys. 2022, 33, 105169. [Google Scholar] [CrossRef]
- Chen, H.; Chen, Z.; Yang, H.; Wen, L.; Yi, Z.; Zhou, Z.; Dai, B.; Zhang, J.; Wu, X.; Wu, P. Multi-mode surface plasmon resonance absorber based on dart-type single-layer graphene. RSC Adv. 2022, 12, 7821–7829. [Google Scholar] [CrossRef]
- Wei, Y.; Duan, J.; Jing, H.; Lyu, Z.; Hao, J.; Qu, Z.; Wang, J.; Zhang, B. A Multiband, Polarization-Controlled Metasurface Absorber for Electromagnetic Energy Harvesting and Wireless Power Transfer. IEEE Trans. Microw. Theory Tech. 2022, 70, 2861–2871. [Google Scholar] [CrossRef]
- You, X.; Upadhyay, A.; Cheng, Y.; Bhaskaran, M.; Sriram, S.; Fumeaux, C.; Withayachumnankul, W. Ultra-wideband far-infrared absorber based on anisotropically etched doped silicon. Opt. Lett. 2020, 45, 1196–1199. [Google Scholar] [CrossRef]
- Zheng, Y.; Yi, Z.; Liu, L.; Wu, X.; Liu, H.; Li, G.; Zeng, L.; Li, H.; Wu, P. Numerical simulation of efficient solar absorbers and thermal emitters based on multilayer nanodisk arrays. Appl. Therm. Eng. 2023, 230, 120841. [Google Scholar] [CrossRef]
- Cheng, Y.; Qian, Y.; Li, Z.; Homma, H.; Fathnan, A.A.; Wakatsuchi, H. The design of metasurface absorber based on the ring-shaped resonator lumped with nonlinear circuit for a pulse wave. J. Electron. Inf. Technol. 2023, 45, 1–9. [Google Scholar]
- Wu, F.; Shi, P.; Yi, Z.; Li, H.; Yi, Y. Ultra-Broadband Solar Absorber and High-Efficiency Thermal Emitter from UV to Mid-Infrared Spectrum. Micromachines 2023, 14, 985. [Google Scholar] [CrossRef] [PubMed]
- Xiao, D.; Tao, K.; Wang, Q.; Ai, Y.; Ouyang, Z. Metasurface for Multiwavelength Coherent Perfect Absorption. IEEE Photonics 2017, 9, 6800108. [Google Scholar] [CrossRef]
- Li, J.; Yu, P.; Tang, C.; Cheng, H.; Li, J.; Chen, S.; Tian, J. Bidirectional Perfect Absorber Using Free Substrate Plasmonic Metasurfaces. Adv. Opt. Mater. 2017, 5, 170015. [Google Scholar] [CrossRef]
- Huang, S.; Xie, Z.; Chen, W.; Lei, J.; Wang, F.; Liu, K.; Li, L. Metasurface with multi-sized structure for multi-band coherent perfect absorption. Opt. Express 2018, 26, 7066. [Google Scholar] [CrossRef]
- Li, T.; Chen, B.-Q.; He, Q.; Bian, L.-A.; Shang, X.-J.; Song, G.-F. Polarization-Selective Bidirectional Absorption Based on a Bilayer Plasmonic Metasurface. Materials 2020, 13, 5298. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Liu, W.; Tang, C.; Cheng, H.; Li, Z.; Zhang, Y.; Li, J.; Chen, S.; Tian, J. A Bilayer Plasmonic Metasurface for Polarization-Insensitive Bidirectional Perfect Absorption. Adv. Theory Simul. 2020, 3, 1900216. [Google Scholar] [CrossRef]
- Huynh, T.V.; Tung, B.S.; Khuyen, B.X.; Ngo, S.T.; Lam, V.D.; Tung, N.T. Controlling the absorption strength in bidirectional terahertz metamaterial absorbers with patterned graphene. Comput. Mater. Sci. 2019, 166, 276–281. [Google Scholar] [CrossRef]
- Meng, H.; Shang, X.; Xue, X.; Tang, K.; Xia, S.; Zhai, X.; Liu, Z.; Chen, J.; Li, H.; Wang, L. Bidirectional and dynamically tunable THz absorber with Dirac semimetal. Opt. Express 2019, 27, 31062–31074. [Google Scholar] [CrossRef]
- Stephen, L.; Yogesh, N.; Subramanian, V. Realization of Bidirectional, Bandwidth-Enhanced Metamaterial Absorber for Microwave Applications. Sci. Rep. 2019, 9, 10058. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.; Wu, Y.; Xiong, J.; Zhou, R.; Li, Q.; Tang, R. Dual-polarized bidirectional three-dimensional metamaterial absorber with transmission windows. Opt. Express 2021, 29, 40770–40780. [Google Scholar] [CrossRef]
- Cheng, Y.; Luo, H.; Chen, F. Broadband metamaterial microwave absorber based on asymmetric sectional resonator structures. J. Appl. Phys. 2020, 127, 214902. [Google Scholar] [CrossRef]
- Fan, S.; Suh, W.; Joannopoulos, J. Temporal coupled-mode theory for the Fano resonance in optical resonators. J. Opt. Soc. Am. A 2003, 20, 569–572. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Qin, M.; Wang, L.; Zhai, X.; Ren, R.; Hu, J. Total absorption of light in monolayer transition-metal dichalcogenides by critical coupling. Opt. Express 2017, 25, 31612–31621. [Google Scholar] [CrossRef]
- Cen, C.L.; Chen, Z.Q.; Xu, D.Y.; Jiang, L.Y.; Chen, X.F.; Yi, Z.; Wu, P.H.; Li, G.F.; Yi, Y.G. High quality factor, High sensitivity metamaterial graphene—Perfect absorber based on critical coupling theory and impedance matching. Nanomaterials 2020, 10, 95. [Google Scholar] [CrossRef]
- Smith, D.R.; Schultz, S.; Markos, P.; Soukoulis, C.M. Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients. Phys. Rev. B 2002, 65, 195104. [Google Scholar] [CrossRef]
- Xiong, Y.; Chen, F.; Cheng, Y.; Luo, H. Rational design and fabrication of optically transparent broadband microwave absorber with multilayer structure based on indium tin oxide. J. Alloys Compd. 2022, 920, 166008. [Google Scholar] [CrossRef]
- Bhattacharyya, S.; Ghosh, S.; Srivastava, K.V. Equivalent circuit model of an ultrathin polarization-independent triple band metamaterial absorber. AIP Adv. 2014, 4, 097127. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, B.; Chen, Y.; Wu, Q.; Li, Y.; Wei, Y.; Wang, J.; Li, F.; Liu, X. Ultrathin Narrowband and Bidirectional Perfect Metasurface Absorber. Coatings 2023, 13, 1340. https://doi.org/10.3390/coatings13081340
Li B, Chen Y, Wu Q, Li Y, Wei Y, Wang J, Li F, Liu X. Ultrathin Narrowband and Bidirectional Perfect Metasurface Absorber. Coatings. 2023; 13(8):1340. https://doi.org/10.3390/coatings13081340
Chicago/Turabian StyleLi, Bingzhen, Yuhua Chen, Qingqing Wu, Yan Li, Yaxing Wei, Jijun Wang, Fangyuan Li, and Xinwei Liu. 2023. "Ultrathin Narrowband and Bidirectional Perfect Metasurface Absorber" Coatings 13, no. 8: 1340. https://doi.org/10.3390/coatings13081340
APA StyleLi, B., Chen, Y., Wu, Q., Li, Y., Wei, Y., Wang, J., Li, F., & Liu, X. (2023). Ultrathin Narrowband and Bidirectional Perfect Metasurface Absorber. Coatings, 13(8), 1340. https://doi.org/10.3390/coatings13081340