Investigation on Fracture Performance of Hot-Mix Asphalt with Reclaimed Asphalt Pavement under Fatigue Loading
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Mixture Design
2.2. Overlay Tester (OT) Setup
3. Results and Discussion
3.1. Monotonic Test Results
3.2. Cyclic Loading Test
3.2.1. Fatigue Life
3.2.2. Energy Evolution during the Fatigue Test
4. Conclusions
- (1)
- With the increase in RAP content, the monotonic fracture behaviors of HMA, in terms of the fracture strength and fracture energy, were significantly deteriorated at both −10 °C and 25 °C.
- (2)
- Two methods were adopted to determine the fatigue life of HMA with different contents of RAP: the cycle number when the specimen fractured in the OT fatigue test; and the cycle number determined by the 50% modulus reduction method. RAP was proved to be beneficial in prolonging fatigue life using the two methods at 25 °C. However, opposite conclusions were made about the effect of RAP on fatigue life at −10 °C.
- (3)
- At −10 °C, the incorporation of RAP significantly reduced the dissipated energy and the cumulative energy, indicating the fatigue cracking resistance was weakened. At 25 °C, HMA with 25% RAP presented the superior fatigue-cracking resistance in terms of the cumulative dissipated energy. The developments of the dissipated energy and the cumulative energy were consistent with the fatigue life results, determined as the cycle number at the end of the OT test, indicating fatigue life determined by the 50% stiffness reduction method may be not appropriate for fatigue characterization under the constant load-controlled mode.
- (4)
- Fatigue tests under other stress ratios should be conducted in the future. On the other hand, virgin binder and RAP binder with varied properties should be used in the future to further reveal the relationship between phase angle and dissipated energy.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ozer, H.; Al-Qadi, I.L.; Singhvi, P.; Bausano, J.; Carvalho, R.; Li, X.; Gibson, N. Prediction of pavement fatigue cracking at an accelerated testing section using asphalt mixture performance tests. Int. J. Pavement Eng. 2018, 19, 264–278. [Google Scholar] [CrossRef]
- Wu, H.; Huang, K.; Song, W.; He, F. Characterizing the fatigue cracking behaviors of OGFC pavements using the overlay tester. Constr. Build. Mater. 2021, 307, 124979. [Google Scholar] [CrossRef]
- Song, W.; Gong, H.; Zeng, S.; Cong, L.; Sun, Y.; Wu, H.; Huang, B. Field performance evaluation of open-graded asphalt friction courses: A survival data analysis. Constr. Build. Mater. 2021, 306, 124745. [Google Scholar]
- Saha, G.; Biligiri, K.P. Fracture properties of asphalt mixtures using semi-circular bending test: A state-of-the-art review and future research. Constr. Build. Mater. 2016, 105, 103–112. [Google Scholar]
- Song, W.; Deng, Z.; Wu, H.; Xu, Z. Cohesive zone modeling of I–II mixed mode fracture behaviors of hot mix asphalt based on the semi-circular bending test. Theor. Appl. Fract. Mech. 2023, 124, 103781. [Google Scholar] [CrossRef]
- Wang, H.; Dang, Z.; Li, L.; You, Z. Analysis on fatigue crack growth laws for crumb rubber modified (CRM) asphalt mixture. Constr. Build. Mater. 2013, 47, 1342–1349. [Google Scholar] [CrossRef]
- Guo, Q.; Wang, H.; Gao, Y.; Jiao, Y.; Liu, F.; Dong, Z. Investigation of the low-temperature properties and cracking resistance of fiber-reinforced asphalt concrete using the DIC technique. Eng. Fract. Mech. 2020, 229, 106951. [Google Scholar] [CrossRef]
- Shafabakhsh, G.; Sadeghnejad, M.; Ebrahimnia, R. Fracture resistance of asphalt mixtures under mixed-mode I/II loading at low-temperature: Without and with nano SiO2. Constr. Build. Mater. 2021, 266, 120954. [Google Scholar]
- Mahani, A.G.; Bazoobandi, P.; Hosseinian, S.M.; Ziari, H. Experimental investigation and multi-objective optimization of fracture properties of asphalt mixtures containing nano-calcium carbonate. Constr. Build. Mater. 2021, 285, 122876. [Google Scholar] [CrossRef]
- Gao, J.; Yang, J.; Yu, D.; Jiang, Y.; Ruan, K.; Tao, W.; Sun, C.; Luo, L. Reducing the variability of multi-source reclaimed asphalt pavement materials: A practice in China. Constr. Build. Mater. 2021, 278, 122389. [Google Scholar]
- Obaid, A.; Nazzal, M.D.; Qtaish, L.A.; Kim, S.S.; Abbas, A.; Arefin, M.; Quasem, T. Effect of RAP Source on Cracking Resistance of Asphalt Mixtures with High RAP Contents. J. Mater. Civ. Eng. 2019, 31, 04019213. [Google Scholar] [CrossRef]
- Song, W.; Zou, X.; Wu, H.; Yang, F. Energy evolution in fracture process of hot mix asphalt containing reclaimed asphalt pavement and rejuvenator. Theor. Appl. Fract. Mech. 2023, 124, 103809. [Google Scholar] [CrossRef]
- Mansourkhaki, A.; Ameri, M.; Habibpour, M.; Shane Underwood, B. Chemical composition and rheological characteristics of binders containing RAP and rejuvenator. J. Mater. Civ. Eng. 2020, 32, 04020026. [Google Scholar] [CrossRef]
- Song, W.; Huang, B.; Shu, X. Influence of warm-mix asphalt technology and rejuvenator on performance of asphalt mixtures containing 50% reclaimed asphalt pavement. J. Clean. Prod. 2018, 192, 191–198. [Google Scholar] [CrossRef]
- Kavussi, A.; Motevalizadeh, S.M. Fracture Failure Evaluation of Foam WMA Mixes Containing RAP by Applying Weibull Probability Distribution Function. Int. J. Pavement Res. Technol. 2021, 15, 1277–1296. [Google Scholar] [CrossRef]
- Kavussi, A.; Motevalizadeh, S.M. Fracture and mechanical properties of water-based foam warm mix asphalt containing reclaimed asphalt pavement. Constr. Build. Mater. 2021, 269, 121332. [Google Scholar] [CrossRef]
- Willis, J.R.; Turner, P.; de Goes Padula, F.; Tran, N.; Julian, G. Effects of changing virgin binder grade and content on high reclaimed asphalt pavement mixture properties. Transp. Res. Rec. 2013, 2371, 66–73. [Google Scholar] [CrossRef]
- Manke, N.D.; Williams, R.C.; Sotoodeh-Nia, Z.; Cochran, E.W.; Porot, L.; Chailleux, E.; Pouget, S.; Olard, F.; Barco Carrion, A.J.D.; Planche, J.-P. Performance of a sustainable asphalt mix incorporating high RAP content and novel bio-derived binder. Road Mater. Pavement Des. 2021, 22, 812–834. [Google Scholar] [CrossRef]
- Ziari, H.; Aliha, M.R.M.; Moniri, A.; Saghafi, Y. Crack resistance of hot mix asphalt containing different percentages of reclaimed asphalt pavement and glass fiber. Constr. Build. Mater. 2020, 230, 117015. [Google Scholar] [CrossRef]
- Yu, B.; Gu, X.; Wu, M.; Ni, F. Application of a high percentage of reclaimed asphalt pavement in an asphalt mixture: Blending process and performance investigation. Road Mater. Pavement Des. 2015, 18, 753–765. [Google Scholar] [CrossRef]
- Khordehbinan, M.; Mahmoud, R. Chemical analysis and middle-low temperature functional of waste polybutadiene rubber polymer modified bitumen. Pet. Sci. Technol. 2020, 38, 8–17. [Google Scholar] [CrossRef]
- Rezaei, S.; Khordehbinan, M.; Fakhrefatemi, S.M.R.; Ghanbari, S.; Ghanbari, M. The effect of nano-SiO2 and the styrene butadiene styrene polymer on the high-temperature performance of hot mix asphalt. Pet. Sci. Technol. 2017, 35, 553–560. [Google Scholar] [CrossRef]
- Zhao, S.; Huang, B.; Shu, X.; Woods, M. Comparative evaluation of warm mix asphalt containing high percentages of reclaimed asphalt pavement. Constr. Build. Mater. 2013, 44, 92–100. [Google Scholar] [CrossRef]
- Song, W.; Shu, X.; Huang, B.; Woods, M. Laboratory investigation of interlayer shear fatigue performance between open-graded friction course and underlying layer. Constr. Build. Mater. 2016, 115, 381–389. [Google Scholar] [CrossRef]
- Shen, S.; Carpenter, S.H. Application of the dissipated energy concept in fatigue endurance limit testing. Transp. Res. Rec. 2005, 1929, 165–173. [Google Scholar] [CrossRef]
- Luo, X.; Luo, R.; Lytton, R.L. Characterization of fatigue damage in asphalt mixtures using pseudostrain energy. J. Mater. Civ. Eng. 2013, 25, 208–218. [Google Scholar] [CrossRef]
- Safaei, F.; Castorena, C.; Kim, Y.R. Linking asphalt binder fatigue to asphalt mixture fatigue performance using viscoelastic continuum damage modeling. Mech. Time-Depend. Mater. 2016, 20, 299–323. [Google Scholar] [CrossRef]
- Germann, F.P.; Lytton, R.L. Methodology for Predicting the Reflection Cracking Life of Asphalt Concrete Overlays; Texas A & M Transportation Institute: Austin, TX, USA, 1979. [Google Scholar]
- Zhou, F.; Hu, S.; Chen, D.-H.; Scullion, T. Overlay tester: Simple performance test for fatigue cracking. Transp. Res. Rec. 2007, 2001, 66–72. [Google Scholar] [CrossRef]
- Ma, H.; Zhang, Z. Paving an engineered cementitious composite (ECC) overlay on concrete airfield pavement for reflective cracking resistance. Constr. Build. Mater. 2020, 252, 119048. [Google Scholar] [CrossRef]
- Haslett, K.; Dave, E.; Sias, J.; Linder, E. Statistical Analysis Framework to Evaluate Asphalt Concrete Overlay Reflective Cracking Performance. Transp. Res. Rec. 2022, 2676, 132–146. [Google Scholar] [CrossRef]
- Garcia, V.M.; Miramontes, A.; Garibay, J.; Abdallah, I.; Carrasco, G.; Lee, R.; Nazarian, S. Alternative methodology for assessing cracking resistance of hot mix asphalt mixtures with overlay tester. Road Mater. Pavement Des. 2017, 18, 388–404. [Google Scholar] [CrossRef]
- JTG E20-2011; Standard Test Methods of Bitumen and Bituminous Mixtures for Highway Engineering. Research Institute of Highway Ministry of Transport: Beijing, China, 2011.
- Texas A & M Transportation Institute. TxDOT Designation: Tex–248–F. Test procedure for Overlay Test. In Construction Division; Texas A & M Transportation Institute: Austin, TX, USA, 2007. [Google Scholar]
- Kim, Y.; Lee, Y.; Lee, H. Correspondence principle for characterization of asphalt concrete. J. Mater. Civ. Eng. 1995, 7, 59–68. [Google Scholar] [CrossRef]
- Lundstrom, R.; Benedetto, H.D.; Isacsson, U. Influence of Asphalt Mixture Stiffness on Fatigue Failure. J. Mater. Civ. Eng. 2004, 16, 516–525. [Google Scholar] [CrossRef]
- Lee, H.J. Uniaxial Constitutive Modeling of Asphalt Concrete using Viscoelasticity and Continuum Damage Theory; North Carolina State University: Raleigh, NC, USA, 1996. [Google Scholar]
- Zhou, Z.; Gu, X.; Jiang, J.; Ni, F.; Jiang, Y. Fatigue cracking performance evaluation of laboratory-produced polymer modified asphalt mixture containing reclaimed asphalt pavement material. Constr. Build. Mater. 2019, 216, 379–389. [Google Scholar] [CrossRef]
- Isailović, I.; Falchetto, A.C.; Wistuba, M.P. Energy dissipation in asphalt mixtures observed in different cyclic stress-controlled fatigue tests. In Proceedings of the 8th RILEM International Symposium on Testing and Characterization of Sustainable and Innovative Bituminous Materials, Ancona, Italy, 7–9 October 2015; Springer: Dordrecht, The Netherlands, 2015; pp. 693–703. [Google Scholar]
- Savitzky, A.; Golay, M.J. Smoothing and differentiation of data by simplified least squares procedures. Anal. Chem. 1964, 36, 1627–1639. [Google Scholar] [CrossRef]
- Diakhaté, M.; Millien, A.; Petit, C.; Phelipot-Mardelé, A.; Pouteau, B. Experimental investigation of tack coat fatigue performance: Towards an improved lifetime assessment of pavement structure interfaces. Constr. Build. Mater. 2011, 25, 1123–1133. [Google Scholar]
Indexes | Unit | Requirement of SBS Binder | SBS | RAP |
---|---|---|---|---|
Penetration (25 °C, 100 g, 5 s) | 0.1 mm | 30–60 | 57 | 43.6 |
Ductility (5 cm/min, 5 °C) | cm | ≥20 | 47.5 | 6 |
Softening point | °C | ≥60 | 82.3 | 57.3 |
Kinematic viscosity (135 °C) | Pa·s | ≤3.0 | 1.98 | / |
Elastic recovery (25 °C, 10) | % | ≥75 | 95 | / |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, X.; Song, W.; Wu, H. Investigation on Fracture Performance of Hot-Mix Asphalt with Reclaimed Asphalt Pavement under Fatigue Loading. Coatings 2023, 13, 1318. https://doi.org/10.3390/coatings13081318
Zhou X, Song W, Wu H. Investigation on Fracture Performance of Hot-Mix Asphalt with Reclaimed Asphalt Pavement under Fatigue Loading. Coatings. 2023; 13(8):1318. https://doi.org/10.3390/coatings13081318
Chicago/Turabian StyleZhou, Xingren, Weimin Song, and Hao Wu. 2023. "Investigation on Fracture Performance of Hot-Mix Asphalt with Reclaimed Asphalt Pavement under Fatigue Loading" Coatings 13, no. 8: 1318. https://doi.org/10.3390/coatings13081318
APA StyleZhou, X., Song, W., & Wu, H. (2023). Investigation on Fracture Performance of Hot-Mix Asphalt with Reclaimed Asphalt Pavement under Fatigue Loading. Coatings, 13(8), 1318. https://doi.org/10.3390/coatings13081318