Crystalline Structure, Morphology, and Adherence of Thick TiO2 Films Grown on 304 and 316L Stainless Steels by Atomic Layer Deposition
Abstract
:1. Introduction
2. Materials and Methods
2.1. TiO2 Film Deposition
2.2. Characterization
3. Results
3.1. FEG-SEM and AFM
3.2. Raman Spectroscopy
3.3. X-ray Diffraction
3.4. Scratch Test Evaluation of Film Adherence
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zheng, J.; Bao, S.; Guo, Y.; Jin, P. TiO2 films prepared by DC reactive magnetron sputtering at room temperature: Phase control and photocatalytic properties. Surf. Coat. Technol. 2014, 240, 293–300. [Google Scholar] [CrossRef]
- Kiarii, E.M.; Govender, K.K.; Ndung, P.G.; Govender, P.P. The generation of charge carriers in semiconductors—A theoreical study. Chem. Phys. Lett. 2017, 678, 167–176. [Google Scholar] [CrossRef]
- Grao, M.; Ratova, M.; Amorim, C.C.; Marcelino, R.B.P.; Kelly, P. Crystalline TiO2 supported on stainless steel mesh deposited in a one step process via pulsed DC magnetron sputtering for wastewater treatment applications. J. Mater. Res. Technol. 2020, 9, 5761–5773. [Google Scholar] [CrossRef]
- Ferreira, I.V.L.; Daniel, L.A. TiO2 Heterogeneous photocatalysis in secondary wastewater treatment. Eng. Sanit. Ambient. 2004, 9, 335–342. [Google Scholar] [CrossRef]
- Seul-yi, Q.; Park, S. Review of TiO2 photocatalyst for water treatment applications. J. Ind. Eng. Chem. 2013, 19, 1761–1769. [Google Scholar]
- Reid, M.; Whatley, V.; Spooner, E.; Nevill, A.M.; Cooper, M.; Ramsden, J.J.; Dancer, S.J. How Does a Photocatalytic Antimicrobial Coating Affect Environmental Bioburden in Hospitals? Infect. Control Hosp. Epidemiol. 2018, 39, 398–404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wadullah, H.M.; Ajeel, S.A.; Abbass, M.K. Synthesis and Characterization of Nanocoatings Thin films by Atomic Layer Deposition for Medical Applications. IOP Conf. Ser. Mater. Sci. Eng. 2019, 518, 032057. [Google Scholar] [CrossRef]
- Evans, P.; Sheel, D.W. Photoactive and antibacterial TiO2 thin films on stainless steel. Surf. Coat. Technol. 2007, 201, 9319–9324. [Google Scholar] [CrossRef]
- Thiruvenkatachari, R.; Vigneswaran, S.; Moon, I.S. A review on UV/TiO2 photocatalytic oxidation process. Korean J. Chem. Eng. 2008, 25, 64–72. [Google Scholar] [CrossRef]
- Feltrin, J. Estabilização a Elevadas Temperaturas da Fase Anatase com Partículas Submicrométricas de SiO2. Ph.D. Thesis, Universidade Federal de Santa Catarina, Florianópolis, Brazil, 2012. [Google Scholar]
- Rossella, F.; Galinetto, P.; Mozzati, M.C.; Malavasi, L.; Fernandez, Y.D.; Drera, G.; Sangaletti, L. TiO2 thin films for spintronics application: A Raman study. J. Raman Spectrosc. 2010, 41, 558–565. [Google Scholar] [CrossRef]
- Shan, C.X.; Hou, X.; Choy, K. Corrosion resistance of TiO2 films grown on stainless steel by atomic layer deposition. Surf. Coat. Technol. 2008, 202, 2399–2402. [Google Scholar] [CrossRef]
- Yeh, T.; Huang, Y.; Wang, M.; Tsai, C. Hydrothermal treatments of TiO2 on Type 304 stainless steels for corrosion mitigation in high temperature pure water. Nucl. Eng. Des. 2013, 254, 228–236. [Google Scholar] [CrossRef]
- Zalnezhad, E.; Hamuda, A.M.S.; Faraji, G.; Shamshirband, S. TiO2 nanotube coating on stainless steel 304 for biomedical applications. Ceram. Int. 2014, 41, 2785–2793. [Google Scholar] [CrossRef]
- Ali, S.; Irfan, M.; Niazi, U.M.; Majdi, A.; Rani, A.; Rashedi, A.; Rahman, S.; Kamal, M.; Khan, A.; Alsaiari, M.A.; et al. Microstructure and Mechanical Properties of Modified 316L Stainless Steel Alloy for Biomedical Applications Using Powder Metallurgy. Materials 2022, 15, 2822. [Google Scholar] [CrossRef]
- Cardenas, L.; Macleod, J.; Lipton-Duffin, J.; Seifu, D.G.; Popescu, F.; Siaj, M.; Mantovani, D.; Rosei, F. Reduced graphene oxide growth on 316L stainless steel for medical applications. Nanoscale 2014, 6, 8664–8670. [Google Scholar] [CrossRef] [PubMed]
- Simionescu, N.; Benea, L.; Dumitrascu, V.M. The Synergistic Effect of Proteins and Reactive Oxygen Species on Electrochemical Behaviour of 316L Stainless Steel for Biomedical Applications. IOP Conf. Ser. Mater. Sci. Eng. 2018, 374, 012058. [Google Scholar] [CrossRef]
- Zhang, H.; Banfield, J.F. Structural characteristics and mechanical and thermodynamic properties of nanocrystalline TiO2. Chem. Rev. 2014, 114, 9613–9644. [Google Scholar] [CrossRef]
- Pillis, M.F.; de Oliveira, M.C.L.; Correa, O.V.; Antunes, R.A. Efeito de filmes de TiO2 obtidos pelo processo de deposição química de organometálicos em fase vapor (MOCVD) sobre a resistência à corrosão do aço inoxidável AISI 304 Marina Fuser Pillis. In Proceedings of the Intercorr 2012, Ondina, Salvador, 14–18 May 2012; pp. 1–9. [Google Scholar]
- Brandt, I.S.; Cid, C.C.P.; Azevedo, C.G.G.; Pereira, A.L.J.; Benetti, L.C.; Ferlauto, A.S.; Pasa, A.A.; da Silva, J.H.D. Influence of substrate on the structure of predominantly anatase TiO2 films grown by reactive sputtering. R. Soc. Chem. Adv. 2018, 8, 7062–7071. [Google Scholar]
- Vieira, A.A.; Manfroi, L.A.; Lobo, L.Z.; Santos, T.B.; Silva, S.A.; De Vasconcelos, G.; Radi, P.A.; Newton, S.; Lucia, S. Tribocorrosion Susceptibility and Osseointegration Studies of Silicon-Carbon-Titanium Oxide Coatings Produced on SS316L by Laser Cladding. J. Bio- Tribo-Corros. 2020, 7, 10. [Google Scholar] [CrossRef]
- Xing, Z.; Zhang, J.; Cui, J.; Yin, J.; Zhao, T.; Kuang, J.; Xiu, Z.; Wan, N.; Zhou, W. Recent advances in floating TiO2-based photocatalysts for environmental application. Appl. Catal. B Environ. 2018, 225, 452–467. [Google Scholar] [CrossRef]
- Basiaga, M.; Walke, W.; Antonowicz, M.; Kajzer, W.; Szewczenko, J.; Domanowska, A.; Michalewicz, A.; Szindler, M.; Staszuk, M.; Czajkowski, M. Impact of surface treatment on the functional properties stainless steel for biomedical applications. Materials 2020, 13, 4767. [Google Scholar] [CrossRef] [PubMed]
- Marin, E.; Lanzutti, A.; Lekka, M.; Guzman, L.; Ensinger, W.; Fedrizzi, L. Chemical and mechanical characterization of TiO2/Al2O3 atomic layer depositions on AISI 316 L stainless steel. Surf. Coat. Technol. 2012, 211, 84–88. [Google Scholar] [CrossRef]
- Szindler, M.; Szindler, M.; Basiaga, M.; Łoński, W.; Kaim, P. Application of ALD thin films on the surface of the surgical scalpel blade. Coatings 2021, 11, 1096. [Google Scholar] [CrossRef]
- Basiaga, M.; Staszuk, M.; Walke, W.; Opilski, Z. Mechanical properties of atomic layer deposition (ALD) TiO2 layers on stainless steel substrates. Mater. Werkst. 2016, 47, 512–520. [Google Scholar] [CrossRef]
- Kania, A.; Szindler, M.M.; Szindler, M. Structure and corrosion behavior of TiO2 thin films deposited by ALD on a biomedical magnesium alloy. Coatings 2021, 11, 70. [Google Scholar] [CrossRef]
- Kang, H.; Lee, C.S.; Kim, D.Y.; Kim, J.; Choi, W.; Kim, H. Photocatalytic effect of thermal atomic layer deposition of TiO2 on stainless steel. Appl. Catal. B Environ. 2011, 104, 6–11. [Google Scholar] [CrossRef]
- Manfroi, L.A.; da Silva, M.G.P.; Vieira, A.A.; Macário, P.F.; da Silva, N.S.; Marques, F.C.; Vieira, L. Anatase Film on Orotracheal Tubes to Mitigate Staphylococcus aureus. Sci. Adv. Mater. 2023, 14, 1487–1493. [Google Scholar] [CrossRef]
- Chiappim, W.; Testoni, G.E.; Moraes, R.S.; Pessoa, R.S.; Sagás, J.C.; Origo, F.D.; Vieira, L.; MacIel, H.S. Structural, morphological, and optical properties of TiO2 thin films grown by atomic layer deposition on fluorine doped tin oxide conductive glass. Vacuum 2016, 123, 91–102. [Google Scholar] [CrossRef]
- Aarik, J.; Karlis, J.; Mändar, H.; Uustare, T.; Sammelselg, V. Influence of structure development on atomic layer deposition of TiO2 thin films. Appl. Surf. Sci. 2001, 181, 339–348. [Google Scholar] [CrossRef]
- Rietveld, H.M. The Rietveld method. Phys. Scr. 2014, 89, 098002. [Google Scholar] [CrossRef]
- Degen, T.; Sadki, M.; Bron, E.; König, U.; Nénert, G. The HighScore suite. Powder Diffr. 2014, 29, S13–S18. [Google Scholar] [CrossRef] [Green Version]
- Horn, M.; Schwebdtfeger, C.F.; Meagher, E.P. Refinement of the structure of anatase at several temperatures. Cryst. Mater. 1972, 136, 273–281. [Google Scholar]
- Baur, V.W.H. Über die Verfeinerung der Kristallstrukturbestimmung einiger Vertreter des Rutiltyps: TiO2, SnO2, GeO2 und MgF2. Acta Crystallogr. 1956, 9, 515–520. [Google Scholar] [CrossRef]
- Straumanis, M.E.; Kim, D.C. Lattice Constants, Thermal Expansion Coefficients, Densities and Perfection of Structure of Pure Iron and of Iron Loaded with Hydrogen. Int. J. Mater. Res. 1969, 60, 272–277. [Google Scholar] [CrossRef]
- ASTM C1624-05; Standard Test Method for Adhesion Strength and Mechanical Failure Modes of Ceramic Coatings by Quantitative Single Point Scratch Testing. ASTM International: West Conshohocken, PA, USA, 2012; pp. 1–29.
- Paula, L.O.; Sene, A.C.; Manfroi, L.A.; Vieira, A.A.; Ramos, M.A.R.; Fukumasu, N.K.; Radi, P.A.; Vieira, L. Tribo-Corrosion and Corrosion Behaviour of Titanium Alloys with and without DLC Films Immersed in Synthetic Urine. J. Bio- Tribo-Corros. 2018, 4, 51. [Google Scholar] [CrossRef]
- Marques, F.C.; Jasieniak, J.J. Ionization potential and electron attenuation length of titanium dioxide deposited by atomic layer deposition determined by photoelectron spectroscopy in air. Appl. Surf. Sci. 2017, 422, 504–508. [Google Scholar] [CrossRef]
- Zanatta, A.R. A fast-reliable methodology to estimate the concentration of rutile or anatase phases of TiO2. AIP Adv. 2017, 7, 075201. [Google Scholar] [CrossRef] [Green Version]
- Hanaor, D.A.H.; Sorrell, C.C. Review of the anatase to rutile phase transformation. J. Mater. Sci. 2011, 46, 855–874. [Google Scholar] [CrossRef] [Green Version]
- Santos, T.B.; Vieira, A.A.; Paula, L.O.; Santos, E.D.; Radi, P.A.; Khouri, S.; Maciel, H.S.; Pessoa, R.S.; Vieira, L. Flexible camphor diamond-like carbon coating on polyurethane to prevent Candida albicans biofilm growth. J. Mech. Behav. Biomed. Mater. 2017, 68, 239–246. [Google Scholar] [CrossRef]
Author [Reference] | Deposition/Growth Temperature | Number of Cycles | Substrate | Deposited Material | Film Thickness | Anatase/ Rutile Presence |
---|---|---|---|---|---|---|
M. Basiaga et al. (2020) [23] | 100–300 °C | 500 and 1500 | Stainless Steel 316 LVM | ZnO | - | - |
E. Marin et al. (2012) [24] | 120 °C | Until it reaches 100 nm of the film | AISI 316 L Stainless Steel | mono/multi-layers of TiO2 and Al2O3 | 100 nm | - |
Magdalena Szindler et al. (2021) [25] | 200 °C | 500, 1000 and 1500 | Surgical steel | ZnO | - | - |
M. Basiaga et al. (2016) [26] | 200 °C | 500 1250 and 2500 | Stainless Steel 316 LVM | TiO2 | 26 nm 50 nm 120 nm | - |
Aneta Kania et al. (2021) [27] | 250 °C | 1500 and 2000 | MgCa2Zn1Gd3 alloy | TiO2 | 52.5 and 70 nm | Yes/No |
Hyemin Kang et al. (2011) [28] | 200 °C, 300 °C, and 400 °C | 500 | Si(100) and 304 austenitic stainless steel | TiO2 | 110 nm | No/No—at 200 °C Yes/Yes—at 300 °C Yes/No—at 400 °C |
Lucas Manfroi et al. (2022) [29] | 100 °C | 1000 | polyvinyl chloride (PVC) tube | TiO2 | - | Yes/No |
W. Chiappim et al. [30] | 150–400 | 2000 | Glass | TiO2 | Yes/No—from 150 to 300 °C No/Yes—For temperature higher than 300 °C | |
Our work | 300 °C | 3000 | AISI 304 and AISI 316L | TiO2 | 179.1 nm and 176.6 nm | Yes/Yes |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marques, V.E.C.; Manfroi, L.A.; Vieira, A.A.; de Jesús Pereira, A.L.; das Chagas Marques, F.; Vieira, L. Crystalline Structure, Morphology, and Adherence of Thick TiO2 Films Grown on 304 and 316L Stainless Steels by Atomic Layer Deposition. Coatings 2023, 13, 757. https://doi.org/10.3390/coatings13040757
Marques VEC, Manfroi LA, Vieira AA, de Jesús Pereira AL, das Chagas Marques F, Vieira L. Crystalline Structure, Morphology, and Adherence of Thick TiO2 Films Grown on 304 and 316L Stainless Steels by Atomic Layer Deposition. Coatings. 2023; 13(4):757. https://doi.org/10.3390/coatings13040757
Chicago/Turabian StyleMarques, Vagner Eduardo Caetano, Lucas Augusto Manfroi, Angela Aparecida Vieira, André Luis de Jesús Pereira, Francisco das Chagas Marques, and Lúcia Vieira. 2023. "Crystalline Structure, Morphology, and Adherence of Thick TiO2 Films Grown on 304 and 316L Stainless Steels by Atomic Layer Deposition" Coatings 13, no. 4: 757. https://doi.org/10.3390/coatings13040757
APA StyleMarques, V. E. C., Manfroi, L. A., Vieira, A. A., de Jesús Pereira, A. L., das Chagas Marques, F., & Vieira, L. (2023). Crystalline Structure, Morphology, and Adherence of Thick TiO2 Films Grown on 304 and 316L Stainless Steels by Atomic Layer Deposition. Coatings, 13(4), 757. https://doi.org/10.3390/coatings13040757