Thickness Measurement of Self-Lubricating Fabric Liner of Inner Ring of Sliding Bearings Using Spectral-Domain Optical Coherence Tomography
Abstract
1. Introduction
2. Literature Review
3. Methodology of Group Refractivity and Depth Measurement
4. Experimental Results
4.1. Geometric Thickness and Group Refractivity Measurement
4.2. Imaging the Real Microstructure within the Self-Lubricating Liner of the Sliding Bearing
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lindner, T.; Preuß, B.; Löbel, M.; Rymer, L.-M.; Grimm, M.; Schwarz, H.; Seyller, T.; Lampke, T. Non-Metallic Alloying Constituents to Develop a Wear-Resistant CrFeNi-BSiC High-Entropy Alloy for Surface Protective Coatings by Thermal Spraying and High-Speed Laser Metal Deposition. Coatings 2023, 13, 291. [Google Scholar] [CrossRef]
- Riquelme, A.; Rodrigo, P.; Escalera-Rodriguez, M.D.; Rams, J. Wear Resistance of Aluminum Matrix Composites’ Coatings Added on AA6082 Aluminum Alloy by Laser Cladding. Coatings 2022, 12, 41. [Google Scholar] [CrossRef]
- Bolelli, G.; Lyphout, C.; Berger, L.-M.; Testa, V.; Myalska-Głowacka, H.; Puddu, P.; Sassatelli, P.; Lusvarghi, L. Wear resistance of HVOF- and HVAF-sprayed (Ti,Mo)(C,N)–Ni coatings from an agglomerated and sintered powder. Wear 2023, 204550, 512–513. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhong, S.; Zhong, J.; Fu, X. Ultrahigh-accuracy measurement of refractivity curves of optical materials using interferometry technology. Measurement 2018, 122, 40–44. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhong, S.; Lin, J.; Huang, Y.; Nsengiyumva, W.; Chen, W.; Luo, M.; Zhong, J.; Yu, Y.; Peng, Z.; et al. Anti-noise frequency estimation performance of Hanning-windowed energy centrobaric method for optical coherence velocimeter. Opt. Lasers Eng. 2020, 134, 106250–106256. [Google Scholar] [CrossRef]
- Gocławski, J.; Korzeniewska, E.; Sekulska-Nalewajko, J.; Sankowski, D.; Pawlak, R. Extraction of the polyurethane layer in textile composites for textronics applications using optical coherence tomography. Polymers 2018, 10, 469. [Google Scholar] [CrossRef]
- Goddard, J.M.; Hotchkiss, J.H. Polymer surface modification for the attachment of bioactive compounds. Prog. Polym. Sci. 2008, 32, 698–725. [Google Scholar] [CrossRef]
- Xing, C.; Jiang, W.; Li, M.; Wang, M.; Xiao, J.; Xu, Z. Application of atomic force microscopy in bitumen materials at the nanoscale. Constr. Build. Mater. 2022, 342, 128059–128078. [Google Scholar] [CrossRef]
- Chen, H.; Yuan, L.; Song, W.; Wu, Z.; Li, D. Biocompatible polymer materials: Role of protein-surface interactions. Prog. Polym. Sci. 2008, 33, 1059–1087. [Google Scholar] [CrossRef]
- Son, D.R.; Raghu, A.V.; Reddy, K.R.; Jeong, H.M. Compatibility of thermally reduced graphene with polyesters. J. Macromol. Sci. Phys. 2016, 55, 1099–1110. [Google Scholar] [CrossRef]
- Han, S.J.; Lee, H.I.; Jeong, H.M.; Kim, B.K.; Raghu, A.V.; Reddy, K.R. Graphene modified lipophilically by stearic acid and its composite with low density polyethylene. J. Macromol. Sci. 2014, 53, 1193–1204. [Google Scholar] [CrossRef]
- Iuras, A.; Scurr, D.J.; Boissier, C.; Nicholas, M.L.; Roberts, C.J.; Alexander, M.R. Imaging of crystalline and amorphous surface regions using time of-flight secondary-ion mass spectrometry (tof-sims): Application to pharmaceutical materials. Anal. Chem. 2016, 88, 3481–3487. [Google Scholar] [CrossRef] [PubMed]
- Depriester, D.; Rolland du Roscoat, S.; Orgéas, L.; Geindreau, C.; Levrard, B.; Brémond, F. Individual fibre separation in 3D fibrous materials imaged by X-ray tomography. J. Microsc. 2022, 286, 220–239. [Google Scholar] [CrossRef]
- Chow, T.M.; Hutchins, D.A.; Mottram, J.T. Simultaneous acoustic emission and ultrasonic tomographic imaging in anisotropic polymer composite material. J. Acoust. Soc. Am. 1993, 94, 944–953. [Google Scholar] [CrossRef]
- Yang, X.; Ju, B.; Kersemans, M. Ultrasonic tomographic reconstruction of local fiber orientation in multi-layer composites using Gabor filter-based information diagram method. NDT E Int. 2021, 124, 102545–102555. [Google Scholar] [CrossRef]
- Tu, W.; Zhong, S.; Luo, M.; Zhang, Q. Non-destructive evaluation of hidden defects beneath the multilayer organic protective coatings based on terahertz technology. Front. Phys. 2021, 9, 676851–676857. [Google Scholar] [CrossRef]
- Luo, M.; Zhong, S.; Yao, L.; Tu, W.; Nsengiyumva, W.; Chen, W. Thin thermally grown oxide thickness detection in thermal barrier coatings based on SWT-BP neural network algorithm and terahertz technology. Appl. Opt. 2020, 59, 4097–4104. [Google Scholar] [CrossRef]
- Huang, D.; Swanson, E.A.; Lin, C.P.; Schuman, J.S.; Stinson, W.G.; Chang, W.; Hee, R.; Flotte, F.; Gregory, K.; Puliafito, A. Optical coherence tomography. Science 1991, 254, 1178–1181. [Google Scholar] [CrossRef]
- Fercher, A.F.; Hitzenberger, C.K.; Kamp, G.; El-Zaiat, S.Y. Measurement of intraocular distances by backscattering spectral interferometry. Opt. Commun. 1995, 117, 43–48. [Google Scholar] [CrossRef]
- Zaki, F.; Hou, I.; Cooper, D.; Patel, D.; Yang, Y.; Liu, X. High-definition optical coherence tomography imaging for noninvasive examination of heritage works. Appl. Opt. 2016, 55, 10313–10317. [Google Scholar] [CrossRef]
- Tong, R.; Hu, M.; Liu, X.; Zhang, Q.; Ge, H.; Gang, T. Spectral-domain optical coherence tomography for the non-invasive investigation of the pigment layers of Tang Dynasty tomb murals exhibited in museums. Optik 2019, 199, 163311–163319. [Google Scholar] [CrossRef]
- Liu, F.; Liu, G.; Zhao, Q.; Shen, L. Robust and high-security fingerprint recognition system using optical coherence tomography. Neurocomputing 2020, 402, 14–28. [Google Scholar] [CrossRef]
- Zhong, S.; Shen, Y.C.; Ho, L.; May, R.K.; Zeitler, J.A.; Evans, M.; Taday, P.F.; Pepper, M.; Rades, T.; Gordon, K.C.; et al. Non-destructive quantification of pharmaceutical tablet coating using terahertz pulsed imaging and optical coherence tomography. Opt. Lasers Eng. 2011, 49, 361–365. [Google Scholar] [CrossRef]
- Dong, B.; Xie, S.; He, Z.; Zhou, Y. Simultaneous measurement of temperature-dependent refractivity and depth-resolved thermal deformation fields inside polymers. Polym. Test. 2018, 65, 297–300. [Google Scholar] [CrossRef]
- Khinast, J.; Sacher, S.; Gartshein, E.; Wolfgang, M.; Wahl, P. Real-time measurement of coating film thickness. Int. J. Pharm. 2019, 31, 28–34. [Google Scholar]
- Nsengiyumva, W.; Zhong, S.; Lin, J.; Zhang, Q.; Zhong, J.; Huang, Y. Advances, limitations and prospects of nondestructive testing and evaluation of thick composites and sandwich structures: A state-of-the-art review. Compos. Struct. 2021, 256, 112951–113043. [Google Scholar] [CrossRef]
- Golde, J.; Schnabel, C.; Filippatos, A.; Wollmann, T.; Gude, M.; Koch, E. Non-destructive testing of a rotating glass-fibre-reinforced polymer disc by swept source optical coherence tomography. EPJ Web Conf. 2020, 238, 06007. [Google Scholar] [CrossRef]
- Gliścińska, E.; Sankowski, D.; Krucińska, I.; Gocławski, J.; Michalak, M.; Rowińska, Z.; Sekulska-Nalewajko, J. Optical coherence tomography image analysis of polymer surface layers in sound-absorbing fibrous composite materials. Polym. Test. 2017, 63, 194–203. [Google Scholar] [CrossRef]
- Shirazi, M.F.; Jeon, M.; Kim, J. Structural analysis of polymer composites using spectral domain optical coherence tomography. Sensors 2017, 17, 1155. [Google Scholar] [CrossRef]
- Liu, P.; Groves, R.M.; Benedictus, R. Signal processing in optical coherence tomography for aerospace material characterization. Opt. Eng. 2013, 52, 033201–033208. [Google Scholar] [CrossRef]
- Birch, K.P.; Downs, M.J. An Updated Edlén Equation for the Refractivity of Air. Metrologia 1993, 30, 155. [Google Scholar] [CrossRef]
Position | d0 (μm) | d1 (μm) | d2 (μm) | d3 (μm) | d (μm) |
---|---|---|---|---|---|
1 | 370.896 | 460.834 | 63.384 | 326.901 | 173.580 |
2 | 371.010 | 463.349 | 56.094 | 319.644 | 171.211 |
3 | 371.052 | 456.742 | 53.138 | 311.046 | 172.219 |
4 | 371.114 | 460.434 | 52.924 | 313.275 | 171.031 |
5 | 371.162 | 460.537 | 50.901 | 312.911 | 172.634 |
6 | 371.194 | 461.038 | 50.854 | 311.961 | 171.263 |
7 | 371.292 | 462.613 | 50.092 | 311.952 | 170.539 |
8 | 371.386 | 460.217 | 47.574 | 306.567 | 170.161 |
9 | 371.489 | 461.656 | 47.755 | 308.799 | 170.877 |
10 | 371.646 | 460.235 | 47.670 | 305.357 | 169.097 |
Mean Value | 371.224 | 460.766 | 52.038 | 312.841 | 171.261 |
Group | 1st (μm) | 2nd (μm) | 3rd (μm) | 4th (μm) | 5th (μm) | RMSE |
---|---|---|---|---|---|---|
1 | 171.743 | 171.761 | 171.822 | 171.977 | 171.923 | 0.180 |
2 | 171.986 | 172.031 | 171.854 | 171.855 | 171.826 | 0.121 |
Order | D’ (μm) |
---|---|
1 | 172 |
2 | 172 |
3 | 172 |
Mean Value | 172 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deng, Y.; Zhong, S.; Lin, J.; Zhang, Q.; Nsengiyumva, W.; Cheng, S.; Huang, Y.; Chen, Z. Thickness Measurement of Self-Lubricating Fabric Liner of Inner Ring of Sliding Bearings Using Spectral-Domain Optical Coherence Tomography. Coatings 2023, 13, 708. https://doi.org/10.3390/coatings13040708
Deng Y, Zhong S, Lin J, Zhang Q, Nsengiyumva W, Cheng S, Huang Y, Chen Z. Thickness Measurement of Self-Lubricating Fabric Liner of Inner Ring of Sliding Bearings Using Spectral-Domain Optical Coherence Tomography. Coatings. 2023; 13(4):708. https://doi.org/10.3390/coatings13040708
Chicago/Turabian StyleDeng, Yaosen, Shuncong Zhong, Jiewen Lin, Qiukun Zhang, Walter Nsengiyumva, Shuying Cheng, Yi Huang, and Zhixiong Chen. 2023. "Thickness Measurement of Self-Lubricating Fabric Liner of Inner Ring of Sliding Bearings Using Spectral-Domain Optical Coherence Tomography" Coatings 13, no. 4: 708. https://doi.org/10.3390/coatings13040708
APA StyleDeng, Y., Zhong, S., Lin, J., Zhang, Q., Nsengiyumva, W., Cheng, S., Huang, Y., & Chen, Z. (2023). Thickness Measurement of Self-Lubricating Fabric Liner of Inner Ring of Sliding Bearings Using Spectral-Domain Optical Coherence Tomography. Coatings, 13(4), 708. https://doi.org/10.3390/coatings13040708