Thickness Measurement of Self-Lubricating Fabric Liner of Inner Ring of Sliding Bearings Using Spectral-Domain Optical Coherence Tomography
Abstract
:1. Introduction
2. Literature Review
3. Methodology of Group Refractivity and Depth Measurement
4. Experimental Results
4.1. Geometric Thickness and Group Refractivity Measurement
4.2. Imaging the Real Microstructure within the Self-Lubricating Liner of the Sliding Bearing
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lindner, T.; Preuß, B.; Löbel, M.; Rymer, L.-M.; Grimm, M.; Schwarz, H.; Seyller, T.; Lampke, T. Non-Metallic Alloying Constituents to Develop a Wear-Resistant CrFeNi-BSiC High-Entropy Alloy for Surface Protective Coatings by Thermal Spraying and High-Speed Laser Metal Deposition. Coatings 2023, 13, 291. [Google Scholar] [CrossRef]
- Riquelme, A.; Rodrigo, P.; Escalera-Rodriguez, M.D.; Rams, J. Wear Resistance of Aluminum Matrix Composites’ Coatings Added on AA6082 Aluminum Alloy by Laser Cladding. Coatings 2022, 12, 41. [Google Scholar] [CrossRef]
- Bolelli, G.; Lyphout, C.; Berger, L.-M.; Testa, V.; Myalska-Głowacka, H.; Puddu, P.; Sassatelli, P.; Lusvarghi, L. Wear resistance of HVOF- and HVAF-sprayed (Ti,Mo)(C,N)–Ni coatings from an agglomerated and sintered powder. Wear 2023, 204550, 512–513. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhong, S.; Zhong, J.; Fu, X. Ultrahigh-accuracy measurement of refractivity curves of optical materials using interferometry technology. Measurement 2018, 122, 40–44. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhong, S.; Lin, J.; Huang, Y.; Nsengiyumva, W.; Chen, W.; Luo, M.; Zhong, J.; Yu, Y.; Peng, Z.; et al. Anti-noise frequency estimation performance of Hanning-windowed energy centrobaric method for optical coherence velocimeter. Opt. Lasers Eng. 2020, 134, 106250–106256. [Google Scholar] [CrossRef]
- Gocławski, J.; Korzeniewska, E.; Sekulska-Nalewajko, J.; Sankowski, D.; Pawlak, R. Extraction of the polyurethane layer in textile composites for textronics applications using optical coherence tomography. Polymers 2018, 10, 469. [Google Scholar] [CrossRef] [Green Version]
- Goddard, J.M.; Hotchkiss, J.H. Polymer surface modification for the attachment of bioactive compounds. Prog. Polym. Sci. 2008, 32, 698–725. [Google Scholar] [CrossRef]
- Xing, C.; Jiang, W.; Li, M.; Wang, M.; Xiao, J.; Xu, Z. Application of atomic force microscopy in bitumen materials at the nanoscale. Constr. Build. Mater. 2022, 342, 128059–128078. [Google Scholar] [CrossRef]
- Chen, H.; Yuan, L.; Song, W.; Wu, Z.; Li, D. Biocompatible polymer materials: Role of protein-surface interactions. Prog. Polym. Sci. 2008, 33, 1059–1087. [Google Scholar] [CrossRef]
- Son, D.R.; Raghu, A.V.; Reddy, K.R.; Jeong, H.M. Compatibility of thermally reduced graphene with polyesters. J. Macromol. Sci. Phys. 2016, 55, 1099–1110. [Google Scholar] [CrossRef]
- Han, S.J.; Lee, H.I.; Jeong, H.M.; Kim, B.K.; Raghu, A.V.; Reddy, K.R. Graphene modified lipophilically by stearic acid and its composite with low density polyethylene. J. Macromol. Sci. 2014, 53, 1193–1204. [Google Scholar] [CrossRef]
- Iuras, A.; Scurr, D.J.; Boissier, C.; Nicholas, M.L.; Roberts, C.J.; Alexander, M.R. Imaging of crystalline and amorphous surface regions using time of-flight secondary-ion mass spectrometry (tof-sims): Application to pharmaceutical materials. Anal. Chem. 2016, 88, 3481–3487. [Google Scholar] [CrossRef] [PubMed]
- Depriester, D.; Rolland du Roscoat, S.; Orgéas, L.; Geindreau, C.; Levrard, B.; Brémond, F. Individual fibre separation in 3D fibrous materials imaged by X-ray tomography. J. Microsc. 2022, 286, 220–239. [Google Scholar] [CrossRef]
- Chow, T.M.; Hutchins, D.A.; Mottram, J.T. Simultaneous acoustic emission and ultrasonic tomographic imaging in anisotropic polymer composite material. J. Acoust. Soc. Am. 1993, 94, 944–953. [Google Scholar] [CrossRef]
- Yang, X.; Ju, B.; Kersemans, M. Ultrasonic tomographic reconstruction of local fiber orientation in multi-layer composites using Gabor filter-based information diagram method. NDT E Int. 2021, 124, 102545–102555. [Google Scholar] [CrossRef]
- Tu, W.; Zhong, S.; Luo, M.; Zhang, Q. Non-destructive evaluation of hidden defects beneath the multilayer organic protective coatings based on terahertz technology. Front. Phys. 2021, 9, 676851–676857. [Google Scholar] [CrossRef]
- Luo, M.; Zhong, S.; Yao, L.; Tu, W.; Nsengiyumva, W.; Chen, W. Thin thermally grown oxide thickness detection in thermal barrier coatings based on SWT-BP neural network algorithm and terahertz technology. Appl. Opt. 2020, 59, 4097–4104. [Google Scholar] [CrossRef]
- Huang, D.; Swanson, E.A.; Lin, C.P.; Schuman, J.S.; Stinson, W.G.; Chang, W.; Hee, R.; Flotte, F.; Gregory, K.; Puliafito, A. Optical coherence tomography. Science 1991, 254, 1178–1181. [Google Scholar] [CrossRef] [Green Version]
- Fercher, A.F.; Hitzenberger, C.K.; Kamp, G.; El-Zaiat, S.Y. Measurement of intraocular distances by backscattering spectral interferometry. Opt. Commun. 1995, 117, 43–48. [Google Scholar] [CrossRef]
- Zaki, F.; Hou, I.; Cooper, D.; Patel, D.; Yang, Y.; Liu, X. High-definition optical coherence tomography imaging for noninvasive examination of heritage works. Appl. Opt. 2016, 55, 10313–10317. [Google Scholar] [CrossRef]
- Tong, R.; Hu, M.; Liu, X.; Zhang, Q.; Ge, H.; Gang, T. Spectral-domain optical coherence tomography for the non-invasive investigation of the pigment layers of Tang Dynasty tomb murals exhibited in museums. Optik 2019, 199, 163311–163319. [Google Scholar] [CrossRef]
- Liu, F.; Liu, G.; Zhao, Q.; Shen, L. Robust and high-security fingerprint recognition system using optical coherence tomography. Neurocomputing 2020, 402, 14–28. [Google Scholar] [CrossRef]
- Zhong, S.; Shen, Y.C.; Ho, L.; May, R.K.; Zeitler, J.A.; Evans, M.; Taday, P.F.; Pepper, M.; Rades, T.; Gordon, K.C.; et al. Non-destructive quantification of pharmaceutical tablet coating using terahertz pulsed imaging and optical coherence tomography. Opt. Lasers Eng. 2011, 49, 361–365. [Google Scholar] [CrossRef] [Green Version]
- Dong, B.; Xie, S.; He, Z.; Zhou, Y. Simultaneous measurement of temperature-dependent refractivity and depth-resolved thermal deformation fields inside polymers. Polym. Test. 2018, 65, 297–300. [Google Scholar] [CrossRef]
- Khinast, J.; Sacher, S.; Gartshein, E.; Wolfgang, M.; Wahl, P. Real-time measurement of coating film thickness. Int. J. Pharm. 2019, 31, 28–34. [Google Scholar]
- Nsengiyumva, W.; Zhong, S.; Lin, J.; Zhang, Q.; Zhong, J.; Huang, Y. Advances, limitations and prospects of nondestructive testing and evaluation of thick composites and sandwich structures: A state-of-the-art review. Compos. Struct. 2021, 256, 112951–113043. [Google Scholar] [CrossRef]
- Golde, J.; Schnabel, C.; Filippatos, A.; Wollmann, T.; Gude, M.; Koch, E. Non-destructive testing of a rotating glass-fibre-reinforced polymer disc by swept source optical coherence tomography. EPJ Web Conf. 2020, 238, 06007. [Google Scholar] [CrossRef]
- Gliścińska, E.; Sankowski, D.; Krucińska, I.; Gocławski, J.; Michalak, M.; Rowińska, Z.; Sekulska-Nalewajko, J. Optical coherence tomography image analysis of polymer surface layers in sound-absorbing fibrous composite materials. Polym. Test. 2017, 63, 194–203. [Google Scholar] [CrossRef]
- Shirazi, M.F.; Jeon, M.; Kim, J. Structural analysis of polymer composites using spectral domain optical coherence tomography. Sensors 2017, 17, 1155. [Google Scholar] [CrossRef] [Green Version]
- Liu, P.; Groves, R.M.; Benedictus, R. Signal processing in optical coherence tomography for aerospace material characterization. Opt. Eng. 2013, 52, 033201–033208. [Google Scholar] [CrossRef] [Green Version]
- Birch, K.P.; Downs, M.J. An Updated Edlén Equation for the Refractivity of Air. Metrologia 1993, 30, 155. [Google Scholar] [CrossRef]
Position | d0 (μm) | d1 (μm) | d2 (μm) | d3 (μm) | d (μm) |
---|---|---|---|---|---|
1 | 370.896 | 460.834 | 63.384 | 326.901 | 173.580 |
2 | 371.010 | 463.349 | 56.094 | 319.644 | 171.211 |
3 | 371.052 | 456.742 | 53.138 | 311.046 | 172.219 |
4 | 371.114 | 460.434 | 52.924 | 313.275 | 171.031 |
5 | 371.162 | 460.537 | 50.901 | 312.911 | 172.634 |
6 | 371.194 | 461.038 | 50.854 | 311.961 | 171.263 |
7 | 371.292 | 462.613 | 50.092 | 311.952 | 170.539 |
8 | 371.386 | 460.217 | 47.574 | 306.567 | 170.161 |
9 | 371.489 | 461.656 | 47.755 | 308.799 | 170.877 |
10 | 371.646 | 460.235 | 47.670 | 305.357 | 169.097 |
Mean Value | 371.224 | 460.766 | 52.038 | 312.841 | 171.261 |
Group | 1st (μm) | 2nd (μm) | 3rd (μm) | 4th (μm) | 5th (μm) | RMSE |
---|---|---|---|---|---|---|
1 | 171.743 | 171.761 | 171.822 | 171.977 | 171.923 | 0.180 |
2 | 171.986 | 172.031 | 171.854 | 171.855 | 171.826 | 0.121 |
Order | D’ (μm) |
---|---|
1 | 172 |
2 | 172 |
3 | 172 |
Mean Value | 172 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deng, Y.; Zhong, S.; Lin, J.; Zhang, Q.; Nsengiyumva, W.; Cheng, S.; Huang, Y.; Chen, Z. Thickness Measurement of Self-Lubricating Fabric Liner of Inner Ring of Sliding Bearings Using Spectral-Domain Optical Coherence Tomography. Coatings 2023, 13, 708. https://doi.org/10.3390/coatings13040708
Deng Y, Zhong S, Lin J, Zhang Q, Nsengiyumva W, Cheng S, Huang Y, Chen Z. Thickness Measurement of Self-Lubricating Fabric Liner of Inner Ring of Sliding Bearings Using Spectral-Domain Optical Coherence Tomography. Coatings. 2023; 13(4):708. https://doi.org/10.3390/coatings13040708
Chicago/Turabian StyleDeng, Yaosen, Shuncong Zhong, Jiewen Lin, Qiukun Zhang, Walter Nsengiyumva, Shuying Cheng, Yi Huang, and Zhixiong Chen. 2023. "Thickness Measurement of Self-Lubricating Fabric Liner of Inner Ring of Sliding Bearings Using Spectral-Domain Optical Coherence Tomography" Coatings 13, no. 4: 708. https://doi.org/10.3390/coatings13040708
APA StyleDeng, Y., Zhong, S., Lin, J., Zhang, Q., Nsengiyumva, W., Cheng, S., Huang, Y., & Chen, Z. (2023). Thickness Measurement of Self-Lubricating Fabric Liner of Inner Ring of Sliding Bearings Using Spectral-Domain Optical Coherence Tomography. Coatings, 13(4), 708. https://doi.org/10.3390/coatings13040708