Long-Term Effect of Nanosized Boric Acid Powder on Optical Properties of Polymer Infiltrated Ceramic CAD-CAM Material
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sasany, R.; Ceylan, G.; Koca, M.F.; Koroglu, A. Effect of potassium nitrate and boric acid on the bond strength of veneering ceramics to zirconia. Eur. J. Prosthodont. Restor. Dent. 2020, 28, 182–188. [Google Scholar] [PubMed]
- Sen, N.; Us, Y.O. Mechanical and optical properties of monolithic CAD-CAM restorative materials. J. Prosthet. Dent. 2018, 119, 593–599. [Google Scholar] [CrossRef]
- Alqutaibi, A.Y.; Ghulam, O.; Krsoum, M.; Binmahmoud, S.; Taher, H.; Elmalky, W.; Zafar, M.S. Revolution of current dental zirconia: A comprehensive review. Molecules 2022, 27, 1699. [Google Scholar] [CrossRef]
- Stamenković, D.D.; Tango, R.N.; Todorović, A.; Karasan, D.; Sailer, I.; Paravina, R.D. Staining and aging-dependent changes in color of CAD-CAM materials. J. Prosthet. Dent. 2021, 126, 672–678. [Google Scholar] [CrossRef]
- Dal Piva, A.M.; Tribst, J.P.; Werner, A.; Anami, L.C.; Bottino, M.A.; Kleverlaan, C.J. Three-body wear effect on different CAD/CAM ceramics staining durability. J. Mech. Behav. Biomed. Mater. 2020, 103, 103579. [Google Scholar] [CrossRef]
- Kanoriya, D.; Singhal, S.; Garg, V.; Pradeep, A.R.; Garg, S.; Kumar, A. clinical efficacy of subgingivally-delivered 0.75% boric acid gel as an adjunct to mechanotherapy in chronic periodontitis: A randomized, controlled clinical trial. J. Investig. Clin. Dent. 2018, 9, 2–7. [Google Scholar] [CrossRef]
- Yeh, C.L.; Wang, H.J. Preparation of tungsten borides by combustion synthesis involving borothermic reduction of WO3. Ceram. Int. 2011, 37, 2597–2601. [Google Scholar] [CrossRef]
- Prabhakar, M.N.; Shah, A.; Song, J. A review on the flammability and flame retardant properties of natural fibers and polymer matrix based composites. Compos. Res. 2015, 28, 29–39. [Google Scholar] [CrossRef]
- Singhal, S.; Pradeep, A.R.; Kanoriya, D.; Garg, S.; Garg, V. Boric acid gel as local drug delivery in the treatment of class II furcation defects in chronic periodontitis: A randomized, controlled clinical trial. J. Investig. Clin. Dent. 2018, 9, 1. [Google Scholar] [CrossRef] [PubMed]
- Akturk, E.; Bektas, O.O.; Ozkanoglu, S.G.; Akin, E.G. Do ozonated water and boric acid affect the bond strength to dentin in different adhesive system. Nijer. J. Clin. 2019, 22, 1758–1764. [Google Scholar] [CrossRef] [PubMed]
- Hadrup, N.; Frederiksen, M.; Sharma, A.K. Toxicity of boric acid, borax and other boron containing compounds: A review. Regul. Toxicol. Pharmacol. 2021, 121, 104873. [Google Scholar] [CrossRef] [PubMed]
- Akbas, F.; Aydin, Z. Boric acid increases the expression levels of human anion exchanger genes SLC4A2 and SLC4A3. Genet. Mol. Res. 2012, 11, 847–854. [Google Scholar] [CrossRef]
- Hacioglu, C.; Kar, F.; Kacar, S.; Sahinturk, V.; Kanbak, G. High concentrations of boric acid trigger concentration-dependent oxidative stress, apoptotic pathways and morphological alterations in DU-145 human prostate cancer cell line. Biol. Trace Elem. Res. 2020, 193, 400–409. [Google Scholar] [CrossRef] [PubMed]
- Acar, O.; Yilmaz, B.; Altintas, S.H.; Chandrasekaran, I.; Johnston, W.M. Color stainability of CAD/CAM and nanocomposite resin materials. J. Prosthet. Dent. 2016, 115, 71–75. [Google Scholar] [CrossRef]
- Saafan, A.; Zaazou, M.H.; Sallam, M.K.; Mosallam, O.; El Danaf, H.A. Assessment of photodynamic therapy and nanoparticles effects on caries models. Open Access Maced. J. Med. Sci. 2018, 12, 1289–1295. [Google Scholar] [CrossRef] [PubMed]
- Roy, I.; Stachowiak, M.K.; Bergey, E.J. Nonviral gene transfection nanoparticles: Function and applications in the brain. Nanomedicine 2008, 4, 89–97. [Google Scholar] [CrossRef]
- Kongkiatkamon, S.; Booranasophone, K.; Tongtaksin, A.; Kiatthanakorn, V.; Rokaya, D. Comparison of fracture load of the four translucent zirconia crowns. Molecules 2021, 26, 5308. [Google Scholar] [CrossRef]
- Sasany, R.; Ergun-Kunt, G. Bond Strength of CAD/CAM ceramic by various modern resin cements in multilayer technique. J. Evol. Med. Dent. Sci. 2022, 11, 618–621. [Google Scholar] [CrossRef]
- Sasany, R.; Saraç, D.; Özcan, M. Effect of different liner techniques and argon plasma treatment of zirconia base on the adhesion and colour change of veneering ceramic. J. Adhesion. Sci. Technol. 2021, 35, 1981–1994. [Google Scholar] [CrossRef]
- Mikhail, S.S.; Schricker, S.R.; Azer, S.S. Optical characteristics of contemporary dental composite resin materials. J. Dent. 2013, 41, 771–781. [Google Scholar] [CrossRef]
- Lim, H.-N.; Yu, B.; Lee, Y.-K. Spectroradiometric and spectrophotometric translucency of ceramic materials. J. Prosthet. Dent. 2010, 104, 239–246. [Google Scholar] [CrossRef] [PubMed]
- Sasany, R.; Ergun-Kunt, G.; Yilmaz, B. Effect of mouth rinses on optical properties of CAD-CAM materials used for laminate veneers and crowns. J. Esthet. Restor. Dent. 2021, 33, 648–653. [Google Scholar] [CrossRef]
- Sasany, R.; Yilmaz, B. Effect of stain brand and shade on color stability of stains applied on a CAD-CAM feldspathic ceramic. Odontology 2022, 110, 452–459. [Google Scholar] [CrossRef] [PubMed]
- Johnston, W.M.; Ma, T.; Kienle, B.H. Translucency parameter of colorants for maxillofacial prostheses. Int. J. Prosthodont. 1995, 8, 79–86. [Google Scholar] [PubMed]
- Church, T.D.; Jessup, J.P.; Guillory, V.L.; Vandewalle, K.S. Translucency and strength of high-translucency monolithic zirconium oxide materials. Gen. Dent. 2017, 65, 48–52. [Google Scholar] [PubMed]
- ISO 13356:2015; Implants for surgery—Ceramic materials based on yttria-stabilized tetragonal zirconia (Y-TZP). International organization for Standardization: Geneva, Switzerland, 2015.
- Sehgal, M.; Bhargava, A.; Gupta, S.; Gupta, P. Shear bond strengths between three different yttria-stabilized zirconia dental materials and veneering ceramic and their susceptibility to autoclave induced low-temperature degradation. Int. J. Biomater. 2016, 9, 658–689. [Google Scholar] [CrossRef]
- Nejatidanesh, F.; Azadbakht, K.; Savabi, O.; Sharifi, M.; Shirani, M. Effect of repeated firing on the translucency of CAD-CAM monolithic glass-ceramics. J. Prosthet. Dent. 2020, 123, 530.e1–530.e6. [Google Scholar] [CrossRef]
- Luo, M.R.; Cui, G.; Rigg, B. The development of the CIE 2000 colour-difference formula: CIEDE2000. Color. Res. Application. 2001, 26, 340–350. [Google Scholar] [CrossRef]
- Ghinea, R.; Pérez, M.M.; Herrera, L.J.; Rivas, M.J.; Yebra, A.; Paravina, R.D. Color difference thresholds in dental ceramics. J. Dent. 2010, 38 (Suppl. S2), e57–e64. [Google Scholar] [CrossRef]
- Paravina, R.D.; Ghinea, R.; Herrera, L.J.; Bona, A.D.; Igiel, C.; Linninger, M.; Sakai, M.; Takahashi, H.; Tashkandi, E.; Mar Perez, M.D. Color difference thresholds in dentistry. J. Esthet. Restor. Dent. 2015, 27, S1–S9. [Google Scholar] [CrossRef]
- Kolakarnprasert, N.; Kaizer, M.R.; Kim, D.K.; Zhang, Y. New multi-layered zirconias: Composition, microstructure and translucency. Dent. Mater. 2019, 35, 797–806. [Google Scholar] [CrossRef] [PubMed]
- Stawarczyk, B.; Liebermann, A.; Eichberger, M.; Guth, J.F. Evaluation of mechanical and optical behavior of current esthetic dental restorative CAD/CAM composites. J. Mech. Behav. Biomed. Mater. 2015, 55, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y. Making yttria-stabilized tetragonal zirconia translucent. Dent. Mater. 2014, 30, 1195–1203. [Google Scholar] [CrossRef] [PubMed]
Groups | Color Dimensions | before Aging | after Aging | p Value |
---|---|---|---|---|
Group B | L* | 81.45 ± 1.07 | 81.79 ± 0.77 | <0.001 |
a* | 0.99 ± 0.86 | 1 ± 1.16 | 0.102 | |
b* | 19.99 ± 0.58 | 18.99 ± 0.58 | 0.098 | |
Group NB | L* | 80.45 ± 1.82 | 78.99 ± 1.46 | <0.001 |
a* | 1 ± 1.6 | 1.1 ± 1.61 | 0.512 | |
b* | 19 ± 1.13B | 17.41 ± 1.43 | <0.001 |
Group | Mean ± SD | Test Statistics | p |
---|---|---|---|
Group B | 0.58 ± 0.54 | t = 7.811 | <0.001 |
Group NB | 1.35 ± 1.52 |
before Aging | after Aging | p | |
---|---|---|---|
Color difference between Group B and Group NB | 0.86 | 2.12 | <0.001 |
TP | before Aging | after Aging | p |
---|---|---|---|
B | 17.33 ± 1.2 | 17.92 ± 1.3 | 0.143 |
NB | 16.93 ± 1.3 | 13.32 ± 0.97 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sasany, R.; Eyüboğlu, T.F.; Özcan, M. Long-Term Effect of Nanosized Boric Acid Powder on Optical Properties of Polymer Infiltrated Ceramic CAD-CAM Material. Coatings 2023, 13, 483. https://doi.org/10.3390/coatings13030483
Sasany R, Eyüboğlu TF, Özcan M. Long-Term Effect of Nanosized Boric Acid Powder on Optical Properties of Polymer Infiltrated Ceramic CAD-CAM Material. Coatings. 2023; 13(3):483. https://doi.org/10.3390/coatings13030483
Chicago/Turabian StyleSasany, Rafat, Tan Fırat Eyüboğlu, and Mutlu Özcan. 2023. "Long-Term Effect of Nanosized Boric Acid Powder on Optical Properties of Polymer Infiltrated Ceramic CAD-CAM Material" Coatings 13, no. 3: 483. https://doi.org/10.3390/coatings13030483
APA StyleSasany, R., Eyüboğlu, T. F., & Özcan, M. (2023). Long-Term Effect of Nanosized Boric Acid Powder on Optical Properties of Polymer Infiltrated Ceramic CAD-CAM Material. Coatings, 13(3), 483. https://doi.org/10.3390/coatings13030483