Long-Term Effect of Nanosized Boric Acid Powder on Optical Properties of Polymer Infiltrated Ceramic CAD-CAM Material
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sasany, R.; Ceylan, G.; Koca, M.F.; Koroglu, A. Effect of potassium nitrate and boric acid on the bond strength of veneering ceramics to zirconia. Eur. J. Prosthodont. Restor. Dent. 2020, 28, 182–188. [Google Scholar] [PubMed]
- Sen, N.; Us, Y.O. Mechanical and optical properties of monolithic CAD-CAM restorative materials. J. Prosthet. Dent. 2018, 119, 593–599. [Google Scholar] [CrossRef]
- Alqutaibi, A.Y.; Ghulam, O.; Krsoum, M.; Binmahmoud, S.; Taher, H.; Elmalky, W.; Zafar, M.S. Revolution of current dental zirconia: A comprehensive review. Molecules 2022, 27, 1699. [Google Scholar] [CrossRef]
- Stamenković, D.D.; Tango, R.N.; Todorović, A.; Karasan, D.; Sailer, I.; Paravina, R.D. Staining and aging-dependent changes in color of CAD-CAM materials. J. Prosthet. Dent. 2021, 126, 672–678. [Google Scholar] [CrossRef]
- Dal Piva, A.M.; Tribst, J.P.; Werner, A.; Anami, L.C.; Bottino, M.A.; Kleverlaan, C.J. Three-body wear effect on different CAD/CAM ceramics staining durability. J. Mech. Behav. Biomed. Mater. 2020, 103, 103579. [Google Scholar] [CrossRef]
- Kanoriya, D.; Singhal, S.; Garg, V.; Pradeep, A.R.; Garg, S.; Kumar, A. clinical efficacy of subgingivally-delivered 0.75% boric acid gel as an adjunct to mechanotherapy in chronic periodontitis: A randomized, controlled clinical trial. J. Investig. Clin. Dent. 2018, 9, 2–7. [Google Scholar] [CrossRef]
- Yeh, C.L.; Wang, H.J. Preparation of tungsten borides by combustion synthesis involving borothermic reduction of WO3. Ceram. Int. 2011, 37, 2597–2601. [Google Scholar] [CrossRef]
- Prabhakar, M.N.; Shah, A.; Song, J. A review on the flammability and flame retardant properties of natural fibers and polymer matrix based composites. Compos. Res. 2015, 28, 29–39. [Google Scholar] [CrossRef] [Green Version]
- Singhal, S.; Pradeep, A.R.; Kanoriya, D.; Garg, S.; Garg, V. Boric acid gel as local drug delivery in the treatment of class II furcation defects in chronic periodontitis: A randomized, controlled clinical trial. J. Investig. Clin. Dent. 2018, 9, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akturk, E.; Bektas, O.O.; Ozkanoglu, S.G.; Akin, E.G. Do ozonated water and boric acid affect the bond strength to dentin in different adhesive system. Nijer. J. Clin. 2019, 22, 1758–1764. [Google Scholar] [CrossRef] [PubMed]
- Hadrup, N.; Frederiksen, M.; Sharma, A.K. Toxicity of boric acid, borax and other boron containing compounds: A review. Regul. Toxicol. Pharmacol. 2021, 121, 104873. [Google Scholar] [CrossRef] [PubMed]
- Akbas, F.; Aydin, Z. Boric acid increases the expression levels of human anion exchanger genes SLC4A2 and SLC4A3. Genet. Mol. Res. 2012, 11, 847–854. [Google Scholar] [CrossRef]
- Hacioglu, C.; Kar, F.; Kacar, S.; Sahinturk, V.; Kanbak, G. High concentrations of boric acid trigger concentration-dependent oxidative stress, apoptotic pathways and morphological alterations in DU-145 human prostate cancer cell line. Biol. Trace Elem. Res. 2020, 193, 400–409. [Google Scholar] [CrossRef] [PubMed]
- Acar, O.; Yilmaz, B.; Altintas, S.H.; Chandrasekaran, I.; Johnston, W.M. Color stainability of CAD/CAM and nanocomposite resin materials. J. Prosthet. Dent. 2016, 115, 71–75. [Google Scholar] [CrossRef]
- Saafan, A.; Zaazou, M.H.; Sallam, M.K.; Mosallam, O.; El Danaf, H.A. Assessment of photodynamic therapy and nanoparticles effects on caries models. Open Access Maced. J. Med. Sci. 2018, 12, 1289–1295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roy, I.; Stachowiak, M.K.; Bergey, E.J. Nonviral gene transfection nanoparticles: Function and applications in the brain. Nanomedicine 2008, 4, 89–97. [Google Scholar] [CrossRef] [Green Version]
- Kongkiatkamon, S.; Booranasophone, K.; Tongtaksin, A.; Kiatthanakorn, V.; Rokaya, D. Comparison of fracture load of the four translucent zirconia crowns. Molecules 2021, 26, 5308. [Google Scholar] [CrossRef]
- Sasany, R.; Ergun-Kunt, G. Bond Strength of CAD/CAM ceramic by various modern resin cements in multilayer technique. J. Evol. Med. Dent. Sci. 2022, 11, 618–621. [Google Scholar] [CrossRef]
- Sasany, R.; Saraç, D.; Özcan, M. Effect of different liner techniques and argon plasma treatment of zirconia base on the adhesion and colour change of veneering ceramic. J. Adhesion. Sci. Technol. 2021, 35, 1981–1994. [Google Scholar] [CrossRef]
- Mikhail, S.S.; Schricker, S.R.; Azer, S.S. Optical characteristics of contemporary dental composite resin materials. J. Dent. 2013, 41, 771–781. [Google Scholar] [CrossRef]
- Lim, H.-N.; Yu, B.; Lee, Y.-K. Spectroradiometric and spectrophotometric translucency of ceramic materials. J. Prosthet. Dent. 2010, 104, 239–246. [Google Scholar] [CrossRef] [PubMed]
- Sasany, R.; Ergun-Kunt, G.; Yilmaz, B. Effect of mouth rinses on optical properties of CAD-CAM materials used for laminate veneers and crowns. J. Esthet. Restor. Dent. 2021, 33, 648–653. [Google Scholar] [CrossRef]
- Sasany, R.; Yilmaz, B. Effect of stain brand and shade on color stability of stains applied on a CAD-CAM feldspathic ceramic. Odontology 2022, 110, 452–459. [Google Scholar] [CrossRef] [PubMed]
- Johnston, W.M.; Ma, T.; Kienle, B.H. Translucency parameter of colorants for maxillofacial prostheses. Int. J. Prosthodont. 1995, 8, 79–86. [Google Scholar] [PubMed]
- Church, T.D.; Jessup, J.P.; Guillory, V.L.; Vandewalle, K.S. Translucency and strength of high-translucency monolithic zirconium oxide materials. Gen. Dent. 2017, 65, 48–52. [Google Scholar] [PubMed]
- ISO 13356:2015; Implants for surgery—Ceramic materials based on yttria-stabilized tetragonal zirconia (Y-TZP). International organization for Standardization: Geneva, Switzerland, 2015.
- Sehgal, M.; Bhargava, A.; Gupta, S.; Gupta, P. Shear bond strengths between three different yttria-stabilized zirconia dental materials and veneering ceramic and their susceptibility to autoclave induced low-temperature degradation. Int. J. Biomater. 2016, 9, 658–689. [Google Scholar] [CrossRef] [Green Version]
- Nejatidanesh, F.; Azadbakht, K.; Savabi, O.; Sharifi, M.; Shirani, M. Effect of repeated firing on the translucency of CAD-CAM monolithic glass-ceramics. J. Prosthet. Dent. 2020, 123, 530.e1–530.e6. [Google Scholar] [CrossRef]
- Luo, M.R.; Cui, G.; Rigg, B. The development of the CIE 2000 colour-difference formula: CIEDE2000. Color. Res. Application. 2001, 26, 340–350. [Google Scholar] [CrossRef]
- Ghinea, R.; Pérez, M.M.; Herrera, L.J.; Rivas, M.J.; Yebra, A.; Paravina, R.D. Color difference thresholds in dental ceramics. J. Dent. 2010, 38 (Suppl. S2), e57–e64. [Google Scholar] [CrossRef]
- Paravina, R.D.; Ghinea, R.; Herrera, L.J.; Bona, A.D.; Igiel, C.; Linninger, M.; Sakai, M.; Takahashi, H.; Tashkandi, E.; Mar Perez, M.D. Color difference thresholds in dentistry. J. Esthet. Restor. Dent. 2015, 27, S1–S9. [Google Scholar] [CrossRef]
- Kolakarnprasert, N.; Kaizer, M.R.; Kim, D.K.; Zhang, Y. New multi-layered zirconias: Composition, microstructure and translucency. Dent. Mater. 2019, 35, 797–806. [Google Scholar] [CrossRef] [PubMed]
- Stawarczyk, B.; Liebermann, A.; Eichberger, M.; Guth, J.F. Evaluation of mechanical and optical behavior of current esthetic dental restorative CAD/CAM composites. J. Mech. Behav. Biomed. Mater. 2015, 55, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y. Making yttria-stabilized tetragonal zirconia translucent. Dent. Mater. 2014, 30, 1195–1203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Groups | Color Dimensions | before Aging | after Aging | p Value |
---|---|---|---|---|
Group B | L* | 81.45 ± 1.07 | 81.79 ± 0.77 | <0.001 |
a* | 0.99 ± 0.86 | 1 ± 1.16 | 0.102 | |
b* | 19.99 ± 0.58 | 18.99 ± 0.58 | 0.098 | |
Group NB | L* | 80.45 ± 1.82 | 78.99 ± 1.46 | <0.001 |
a* | 1 ± 1.6 | 1.1 ± 1.61 | 0.512 | |
b* | 19 ± 1.13B | 17.41 ± 1.43 | <0.001 |
Group | Mean ± SD | Test Statistics | p |
---|---|---|---|
Group B | 0.58 ± 0.54 | t = 7.811 | <0.001 |
Group NB | 1.35 ± 1.52 |
before Aging | after Aging | p | |
---|---|---|---|
Color difference between Group B and Group NB | 0.86 | 2.12 | <0.001 |
TP | before Aging | after Aging | p |
---|---|---|---|
B | 17.33 ± 1.2 | 17.92 ± 1.3 | 0.143 |
NB | 16.93 ± 1.3 | 13.32 ± 0.97 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sasany, R.; Eyüboğlu, T.F.; Özcan, M. Long-Term Effect of Nanosized Boric Acid Powder on Optical Properties of Polymer Infiltrated Ceramic CAD-CAM Material. Coatings 2023, 13, 483. https://doi.org/10.3390/coatings13030483
Sasany R, Eyüboğlu TF, Özcan M. Long-Term Effect of Nanosized Boric Acid Powder on Optical Properties of Polymer Infiltrated Ceramic CAD-CAM Material. Coatings. 2023; 13(3):483. https://doi.org/10.3390/coatings13030483
Chicago/Turabian StyleSasany, Rafat, Tan Fırat Eyüboğlu, and Mutlu Özcan. 2023. "Long-Term Effect of Nanosized Boric Acid Powder on Optical Properties of Polymer Infiltrated Ceramic CAD-CAM Material" Coatings 13, no. 3: 483. https://doi.org/10.3390/coatings13030483
APA StyleSasany, R., Eyüboğlu, T. F., & Özcan, M. (2023). Long-Term Effect of Nanosized Boric Acid Powder on Optical Properties of Polymer Infiltrated Ceramic CAD-CAM Material. Coatings, 13(3), 483. https://doi.org/10.3390/coatings13030483