Effects of WC Particles on the Microstructure of IN718/WC Composite Coatings Fabricated by Laser Cladding: A Two-Dimensional Phase-Field Study
Abstract
:1. Introduction
2. Model Development
2.1. Multiphase-Field Method
2.2. Nucleation Model
2.3. Lattice Boltzmann Method
2.4. MPF-LBM Algorithm Implementation
3. Simulation Results and Discussion
3.1. Simulation Parameters
3.1.1. Solidification Conditions and Parameters of the Phase-Field Simulation
3.1.2. Eutectic Phase Diagram Used in the Simulations
3.2. Solidification under Convection
3.3. Solidification under Combined Effects of Convection and the Temperature Gradient
4. Experiments
4.1. Experimental Details
4.2. Effects of Convection of the Microstructure
4.3. Inhibition by WCCDBs on the Growth of Columnar Crystals
4.4. Hardness Distribution
4.5. Wear Properties
5. Conclusions
- With a decrease in the temperature, a cellular alloy reaction layer, IN718 grains, and eutectic structure are formed around WC particles.
- Convection of the laser molten pool can induce double-tail-like or spindle-like WCCDBs. The hardness of the WCCDBs is higher than that of the IN718 matrix.
- WCCDBs can inhibit the growth of columnar crystals. In detail, the freezing temperature of the WCCDBs is lower than that at other positions in the melt, so the WCCDBs can block the growth path of columnar crystals.
- Under the combined effects of solid solution strengthening of WC and the dispersion strengthening of WC particles, the average hardness of the IN718/WC composite coating reached 377.54 HV0.2, 43.79% higher than that of the IN718 coating.
- WC particles can improve the abrasive wear of the IN718 coating. In this study, the friction coefficient of the IN718/WC composite coating decreased to 0.508 and the wear track depth decreased to 8.72 μm.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
c | at.% | solution concentration |
D | m2/s | solute diffusion coefficient |
D0 | m2/s | diffusion constant |
fCHEM | J/m3 | Chemical free energy density |
fINTF | J/m3 | interfacial free energy density |
fk | - | distribution function |
- | equilibrium distribution function | |
F | J | total free energy |
Fk | - | discrete external force |
F | N/m3 | volumetric force vector |
g | N/m3 | volumetric gravitational acceleration |
J | - | antitrapping current term |
lk | - | lattice velocity vector |
M | m4/(J∙s) | interface mobility |
nx, ny | m | components of the unit normal vector |
N | - | number of order parameters |
Q | J/mole | activation energy |
R | J/(mole∙K) | ideal gas constant |
t | s | time moment |
T | K | temperature |
uliquid | - | velocity vector of fluid in the LBM |
ν | m/s | velocity vector in the MPF |
V | m3 | volume |
x | m | position vector |
δ | - | anisotropy coefficient |
η | m | finite interface width |
λ | - | chemical potential |
σ | J/m2 | interfacial energy |
σ* | J/m2 | interface energy coefficient |
ν | N∙s/m2 | kinematic viscosity |
θ | rad | angle between the surface normal and the first prismatic direction |
ρ | kg/m3 | fluid density |
τ | - | relaxation factor |
ξ | - | noise term |
Δg | - | thermodynamic driving force |
Δr | - | lattice interval |
Δt | s | discretized time step |
Δx | m | discretized space interval |
Ω | - | calculation domain |
Φ | - | order parameter |
CFD | computational fluid dynamics | |
LBM | lattice Boltzmann method | |
MPF | multiphase field | |
WCCDB | WC convection diffusion band |
References
- Liu, X.; Bi, J.; Meng, Z.; Li, R.; Li, Y.; Zhang, T. Tribological behaviors of high-hardness Co-based amorphous coatings fabricated by laser cladding. Tribol. Int. 2021, 162, 107142. [Google Scholar] [CrossRef]
- Siddiqui, A.A.; Dubey, A.K. Recent trends in laser cladding and surface alloying. Opt. Laser Technol. 2021, 134, 106619. [Google Scholar] [CrossRef]
- Raghavan, N.; Stump, B.C.; Fernandez-Zelaia, P.; Kirka, M.M.; Simunovic, S. Influence of geometry on columnar to equiaxed transition during electron beam powder bed fusion of IN718. Addit. Manuf. 2021, 47, 102209. [Google Scholar] [CrossRef]
- Zhu, L.; Yang, Z.; Xin, B.; Wang, S.; Meng, G.; Ning, J.; Xue, P. Microstructure and mechanical properties of parts formed by ultrasonic vibration-assisted laser cladding of Inconel 718. Surf. Coat. Technol. 2021, 410, 126964. [Google Scholar] [CrossRef]
- Karthik, B.; Sharma, S.; Gowrishankar, M.; Hegde, A.; Srinivas, D. Effect of weight of reinforcement and coating thickness on the hardness of stir cast AL7075-nickel coated duralumin powder mmc. J. Appl. Eng. Sci. 2022, 20, 900–907. [Google Scholar] [CrossRef]
- Yan, X.; Chang, C.; Deng, Z.; Lu, B.; Chu, Q.; Chen, X.; Ma, W.; Liao, H.; Liu, M. Microstructure, interface characteristics and tribological properties of laser cladded NiCrBSi-WC coatings on PH 13-8 Mo steel. Tribol. Int. 2021, 157, 106873. [Google Scholar] [CrossRef]
- Wu, S.; Liu, Z.; Huang, X.; Wu, Y.; Gong, Y. Process parameter optimization and EBSD analysis of Ni60A-25% WC laser cladding. Int. J. Refract. Met. Hard Mater. 2021, 101, 105675. [Google Scholar] [CrossRef]
- Huo, K.; Zhou, J.; Dai, F.; Xu, J. Particle distribution and microstructure of IN718/WC composite coating fabricated by electromagnetic compound field-assisted laser cladding. Appl. Surf. Sci. 2021, 545, 149078. [Google Scholar] [CrossRef]
- Farahmand, P.; Liu, S.; Zhang, Z.; Kovacevic, R. Laser cladding assisted by induction heating of Ni–WC composite enhanced by nano-WC and La2O3. Ceram. Int. 2014, 40, 15421–15438. [Google Scholar] [CrossRef]
- Wang, Q.; Li, Q.; Zhang, L.; Chen, D.X.; Jin, H.; Li, J.D.; Zhang, J.W.; Ban, C.Y. Microstructure and properties of Ni-WC gradient composite coating prepared by laser cladding. Ceram. Int. 2021, 48, 7905–7917. [Google Scholar] [CrossRef]
- Zhou, S.; Xu, T.; Hu, C.; Wu, H.; Liu, H.; Ma, X. A comparative study of tungsten carbide and carbon nanotubes reinforced Inconel 625 composite coatings fabricated by laser cladding. Opt. Laser Technol. 2021, 140, 106967. [Google Scholar] [CrossRef]
- Yang, R.; Huang, N.; Tian, Y.; Qin, J.; Lu, P.; Chen, H.; Li, H.; Chen, X. Insights into the exceptional cavitation erosion resistance of laser surface melted Ni-WC composites: The effects of WC morphology and distribution. Surf. Coatings Technol. 2022, 444, 128685. [Google Scholar] [CrossRef]
- Shen, X.; He, X.; Gao, L.; Su, G.; Xu, C.; Xu, N. Study on crack behavior of laser cladding ceramic-metal composite coating with high content of WC. Ceram. Int. 2022, 48, 17460–17470. [Google Scholar] [CrossRef]
- Zhang, A.; Du, J.; Guo, Z.; Wang, Q.; Xiong, S. Dependence of Lamellar Eutectic Growth with Convection on Boundary Conditions and Geometric Confinement: A Phase-Field Lattice-Boltzmann Study. Met. Mater. Trans. B 2019, 50, 517–530. [Google Scholar] [CrossRef]
- Cao, L.; Liu, D.; Jiang, P.; Shao, X.; Zhou, Q.; Wang, Y. Multi-physics simulation of dendritic growth in magnetic field assisted solidification. Int. J. Heat Mass Transf. 2019, 144, 118673. [Google Scholar] [CrossRef]
- Gu, C.; Ridgeway, C.D.; Cinkilic, E.; Lu, Y.; Luo, A.A. Predicting gas and shrinkage porosity in solidification microstructure: A coupled three-dimensional cellular automaton model. J. Mater. Sci. Technol. 2020, 49, 91–105. [Google Scholar] [CrossRef]
- Ushmaev, D.; Liao, Z.; Notron, A.; Axinte, D. On the importance of interface stability in cellular automata models: Planar and dendritic solidification in laser melted YSZ. Mater. Des. 2022, 219, 110823. [Google Scholar] [CrossRef]
- Viardin, A.; Souhar, Y.; Fernández, M.C.; Apel, M.; Založnik, M. Mesoscopic modeling of equiaxed and columnar solidification microstructures under forced flow and buoyancy-driven flow in hypergravity: Envelope versus phase-field model. Acta Mater. 2020, 199, 680–694. [Google Scholar] [CrossRef]
- Kharicha, A.; Stefan-Kharicha, M.; Ludwig, A.; Wu, M. A scale adaptive dendritic envelope model of solidification at mesoscopic scales. IOP Conf. Series Mater. Sci. Eng. 2015, 84, 012032. [Google Scholar] [CrossRef]
- Böttger, B.; Eiken, J.; Apel, M. Multi-ternary extrapolation scheme for efficient coupling of thermodynamic data to a multi-phase-field model. Comput. Mater. Sci. 2015, 108, 283–292. [Google Scholar] [CrossRef]
- Zhang, A.; Du, J.; Guo, Z.; Wang, Q.; Xiong, S. Conservative phase-field method with a parallel and adaptive-mesh-refinement technique for interface tracking. Phys. Rev. E 2019, 100, 023305. [Google Scholar] [CrossRef] [PubMed]
- Xiao, W.; Li, S.; Wang, C.; Shi, Y.; Mazumder, J.; Xing, H.; Song, L. Multi-scale simulation of dendrite growth for direct energy deposition of nickel-based superalloys. Mater. Des. 2019, 164, 107553. [Google Scholar] [CrossRef]
- Acharya, R.; Sharon, J.A.; Staroselsky, A. Prediction of microstructure in laser powder bed fusion process. Acta Mater. 2017, 124, 360–371. [Google Scholar] [CrossRef]
- Liu, D.; Wang, Y. Mesoscale multi-physics simulation of rapid solidification of Ti-6Al-4V alloy. Addit. Manuf. 2019, 25, 551–562. [Google Scholar] [CrossRef]
- Zhang, A.; Guo, Z.; Xiong, S.-M. Eutectic pattern transition under different temperature gradients: A phase field study coupled with the parallel adaptive-mesh-refinement algorithm. J. Appl. Phys. 2017, 121, 125101. [Google Scholar] [CrossRef]
- Tegeler, M.; Shchyglo, O.; Kamachali, R.D.; Monas, A.; Steinbach, I.; Sutmann, G. Parallel multiphase field simulations with OpenPhase. Comput. Phys. Commun. 2017, 215, 173–187. [Google Scholar] [CrossRef]
- Böttger, B.; Eiken, J.; Steinbach, I. Phase field simulation of equiaxed solidification in technical alloys. Acta Mater. 2006, 54, 2697–2704. [Google Scholar] [CrossRef]
- Monas, A.; Shchyglo, O.; Kim, S.-J.; Yim, C.D.; Höche, D.; Steinbach, I. Divorced Eutectic Solidification of Mg-Al Alloys. Jom 2015, 67, 1805–1811. [Google Scholar] [CrossRef]
- Mohamad, A. Lattice Boltzmann Method; Springer: Berlin/Heidelberg, Germany, 2011; Volume 70. [Google Scholar]
- Zhang, A.; Guo, Z.; Jiang, B.; Du, J.; Wang, C.; Huang, G.; Zhang, D.; Liu, F.; Xiong, S.; Pan, F. Multiphase and multiphysics modeling of dendrite growth and gas porosity evolution during solidification. Acta Mater. 2021, 214, 117005. [Google Scholar] [CrossRef]
- Wang, C.; Zhou, J.; Zhang, T.; Meng, X.; Li, P.; Huang, S. Numerical simulation and solidification characteristics for laser cladding of Inconel 718. Opt. Laser Technol. 2022, 149, 107843. [Google Scholar] [CrossRef]
- Chen, L.; Yu, T.; Xu, P.; Zhang, B. In-situ NbC reinforced Fe-based coating by laser cladding: Simulation and experiment. Surf. Coatings Technol. 2021, 412, 127027. [Google Scholar] [CrossRef]
- Jiang, Y.; Cheng, Y.; Zhang, X.; Yang, J.; Yang, X.; Cheng, Z. Simulation and experimental investigations on the effect of Marangoni convection on thermal field during laser cladding process. Optik 2020, 203, 164044. [Google Scholar] [CrossRef]
- Kunieda, T.; Yamashita, K.; Murata, Y.; Koyama, T.; Morinaga, M. Effect of Rhenium Addition on Tungsten Diffusivity in Iron-Chromium Alloys. Mater. Trans. 2006, 47, 2106–2108. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, J.; Wang, H.; Lu, X.-G.; Zhang, L. Thermodynamic description of the Ni-Mo-W system and interdiffusion study of its fcc phase. Calphad 2018, 61, 165–172. [Google Scholar] [CrossRef]
- Fernandes, C.; Senos, A. Cemented carbide phase diagrams: A review. Int. J. Refract. Met. Hard Mater. 2011, 29, 405–418. [Google Scholar] [CrossRef]
- Durst, F.; Arnold, I. Fluid Flows of Small Reynolds Numbers. In Fluid Mechanics: An Introduction to the Theory of Fluid Flows; Springer: Berlin/Heidelberg, Germany, 2008; pp. 429–461. [Google Scholar]
- Goldstein, J.I.; Newbury, D.E.; Michael, J.R.; Ritchie, N.W.; Scott, J.H.J.; Joy, D.C. Scanning Electron Microscopy and X-ray Microanalysis; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Li, X.; Zhang, M.; Xia, X.; Cao, T.; Liang, L.; Li, H. Corrosion Behavior of WC–10 wt % Ni3Al Composite in Acidic Media. J. Superhard Mater. 2019, 41, 345–354. [Google Scholar] [CrossRef]
- Xiao, Q.; Sun, W.L.; Yang, K.X.; Xing, X.F.; Chen, Z.H.; Zhou, H.N.; Lu, J. Wear mechanisms and micro-evaluation on WC particles investigation of WC-Fe composite coatings fabricated by laser cladding. Surf. Coat. Technol. 2021, 420, 127341. [Google Scholar] [CrossRef]
- Xu, P.; Zhu, L.; Xue, P.; Yang, Z.; Wang, S.; Ning, J.; Meng, G.; Lan, Q.; Qin, S. Microstructure and properties of IN718/WC-12Co composite coating by laser cladding. Ceram. Int. 2022, 48, 9218–9228. [Google Scholar] [CrossRef]
- Wang, J.; Zhou, J.; Zhang, T.; Meng, X.; Li, P.; Huang, S.; Zhu, H. Ultrasonic-Induced Grain Refinement in Laser Cladding Nickel-Based Superalloy Reinforced by WC Particles. Coatings 2023, 13, 151. [Google Scholar] [CrossRef]
- Zhang, T.; Zhou, J.; Wang, J.; Meng, X.; Li, P.; Huang, S.; Zhu, H. Effect of hybrid ultrasonic-electromagnetic field on cracks and microstructure of Inconel 718/60%WC composites coating fabricated by laser cladding. Ceram. Int. 2022, 48, 33901–33913. [Google Scholar] [CrossRef]
- Lv, J.; Zhou, J.; Zhang, T.; Meng, X.; Li, P.; Huang, S. Microstructure and Wear Properties of IN718/WC Composite Coating Fabricated by Ultrasonic Vibration-Assisted Laser Cladding. Coatings 2022, 12, 412. [Google Scholar] [CrossRef]
- Zhang, J.; Lei, J.; Gu, Z.; Tantai, F.; Tian, H.; Han, J.; Fang, Y. Effect of WC-12Co content on wear and electrochemical corrosion properties of Ni-Cu/WC-12Co composite coatings deposited by laser cladding. Surf. Coatings Technol. 2020, 393, 125807. [Google Scholar] [CrossRef]
Nucleation Density | Value | Nucleation Temperature |
---|---|---|
Particle density of δ-WC in the melt | 2 × 1016 m−3 | 3070 K |
Particle density of γ-Ni in the melt | 5 × 1016 m−3 | 1735 K |
Particle density of δ-WC in the melt | 5 × 1016 m−3 | 1600 K |
Section | Convection Direction | Temperature Gradient |
---|---|---|
3.2 | along the X-axis | 0 |
3.3 | along the X-axis | 1 K/μm, along the Z-axis |
3.3 | along the X-axis | 1 K/μm, along the X-axis |
Symbol | Description | Value | Reference |
---|---|---|---|
Δx | Grid spacing | 5 × 10−7 m | [28] |
η | Interface width | 4.5Δx m | [28] |
Δt | Time step | (5~25) × 10−7 s | [28] |
Interface energy coefficient | 0.09 J/m2 | [28] | |
δfcc | (γ-Ni)—melt interface anisotropy | 0.1 | - |
δhex | (δ-WC)—melt interface anisotropy | 0.1 | - |
Mγ-Ni,melt | (γ-Ni)—melt interface mobility | 1 × 10−8 m4/(J∙s) | [24] |
Mδ-WC,melt | (δ-WC)—melt interface mobility | 1 × 10−8 m4/(J∙s) | [24] |
Mαβ | Other interface mobility | 1 × 10−12 m4/(J∙s) | [24] |
Diffusion coefficient of WC in the melt | 4.054 × 10−5 m2/s | [34] | |
Qmelt | Diffusion activation energy of the melt | 3.307 × 105 J/mole | [34] |
Dγ-Ni | Diffusion coefficient of WC in γ-Ni | 1 × 10−15 m2/s | [35] |
Dδ-WC | Diffusion coefficient of WC in δ-WC | 1 × 10−15 m2/s | [35] |
ν | Kinematic viscosity | 1.0 × 10−7 N∙s/m2 | - |
Symbol | Description | Value | Symbol | Description | Value |
---|---|---|---|---|---|
Cγ-Ni,melt | Point A | 0 at% | mmelt,γ-Ni | Line AB | −5.67 K/% |
Tγ-Ni,melt | Point A | 1770 K | mγ-Ni,melt | Line AE | −17 K/% |
Cδ-WC,melt | Point D | 100 at% | mmelt,δ-WC | Line BD | 21.57 K/% |
Tδ-WC,melt | Point D | 3110 K | mδ-WC,melt | Line FD | 75.5 K/% |
Cγ-Ni,δ-WC | Point C | 42.55 at% | mγ-Ni, δ-WC | Line EC | 23 K/% |
Tγ-Ni,δ-WC | Point C | 2348 K | mδ-WC,γ-Ni | Line CF | −20 K/% |
Symbol | Description | Composition (at%) | ||||||
---|---|---|---|---|---|---|---|---|
W | C | Fe | Cr | Ni | Nb | Mo | ||
1 | WCCDB | 3.42 | 17.43 | 15.19 | 17.2 | 37.8 | 2.38 | 0.85 |
2 | Columnar crystal | 0.09 | 2.43 | 21.67 | 22.3 | 48.77 | 1.22 | 0.53 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Zhou, J.; Zhang, T.; Li, P.; Zhu, H.; Meng, X. Effects of WC Particles on the Microstructure of IN718/WC Composite Coatings Fabricated by Laser Cladding: A Two-Dimensional Phase-Field Study. Coatings 2023, 13, 432. https://doi.org/10.3390/coatings13020432
Wang Y, Zhou J, Zhang T, Li P, Zhu H, Meng X. Effects of WC Particles on the Microstructure of IN718/WC Composite Coatings Fabricated by Laser Cladding: A Two-Dimensional Phase-Field Study. Coatings. 2023; 13(2):432. https://doi.org/10.3390/coatings13020432
Chicago/Turabian StyleWang, Yixin, Jianzhong Zhou, Teng Zhang, Pengfei Li, Hao Zhu, and Xiankai Meng. 2023. "Effects of WC Particles on the Microstructure of IN718/WC Composite Coatings Fabricated by Laser Cladding: A Two-Dimensional Phase-Field Study" Coatings 13, no. 2: 432. https://doi.org/10.3390/coatings13020432
APA StyleWang, Y., Zhou, J., Zhang, T., Li, P., Zhu, H., & Meng, X. (2023). Effects of WC Particles on the Microstructure of IN718/WC Composite Coatings Fabricated by Laser Cladding: A Two-Dimensional Phase-Field Study. Coatings, 13(2), 432. https://doi.org/10.3390/coatings13020432