Numerical Investigation of the Effect of Symmetry on Evaporation Triggered Elastocapillary Top-Gathering of High Aspect Ratio Micropillars
Abstract
1. Introduction
2. Numerical Method
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cassie, A.B.D.; Baxter, S. Wettability of porous surfaces. Trans. Faraday Soc. 1944, 40, 546–551. [Google Scholar] [CrossRef]
- Wenzel, R.N. Resistance of solid surfaces to wetting by water. Ind. Eng. Chem. 1936, 28, 988–994. [Google Scholar] [CrossRef]
- Sojoudi, H.; Kim, S.; Zhao, H.; Annavarapu, R.K.; Mariappan, D.; Hart, A.J.; McKinley, G.H.; Gleason, K.K. Stable Wettability Control of Nanoporous Microstructures by iCVD Coating of Carbon Nanotubes. ACS Appl. Mater. Interfaces 2017, 9, 43287–43299. [Google Scholar] [CrossRef] [PubMed]
- Bonab, M.S.; Minetti, C.; Iorio, C.S.; Zhao, D.; Liu, Q.-S.; Ou, J.; Kempers, R.; Amirfazli, A. Experimental Investigation of Dropwise Condensation Shedding by Shearing Airflow in Microgravity Using Different Surface Coatings. Langmuir 2022, 39, 64–74. [Google Scholar] [CrossRef] [PubMed]
- Xia, Y.; Whitesides, G.M. Soft lithography. Annu. Rev. Mater. Sci. 1998, 28, 153–184. [Google Scholar] [CrossRef]
- Zhang, Y.; Lo, C.-W.; Taylor, J.A.; Yang, S. Replica Molding of High-Aspect-Ratio Polymeric Nanopillar Arrays with High Fidelity. Langmuir 2006, 22, 8595–8601. [Google Scholar] [CrossRef]
- Li, X.; Tao, D.; Lu, H.; Bai, P.; Liu, Z.; Ma, L.; Meng, Y.; Tian, Y. Recent developments in gecko-inspired dry adhesive surfaces from fabrication to application. Surf. Topogr. Metrol. Prop. 2019, 7, 023001. [Google Scholar] [CrossRef]
- Ke, Y.; Chen, J.; Lin, G.; Wang, S.; Zhou, Y.; Yin, J.; Lee, P.S.; Long, Y. Smart Windows: Electro-, Thermo-, Mechano-, Photochromics, and Beyond. Adv. Energy Mater. 2019, 9, 1902066. [Google Scholar] [CrossRef]
- Kim, S.; Sojoudi, H.; Zhao, H.; Mariappan, D.; McKinley, G.H.; Gleason, K.K.; Hart, A.J. Ultrathin high-resolution flexographic printing using nanoporous stamps. Sci. Adv. 2016, 2, e1601660. [Google Scholar] [CrossRef]
- Mariappan, D.D.; Kim, S.; Boutilier, M.S.H.; Zhao, J.; Zhao, H.; Beroz, J.; Muecke, U.; Sojoudi, H.; Gleason, K.K.; Brun, P.-T.; et al. Dynamics of Liquid Transfer from Nanoporous Stamps in High-Resolution Flexographic Printing. Langmuir 2019, 35, 7659–7671. [Google Scholar] [CrossRef]
- Hansson, J.; Yasuga, H.; Haraldsson, T.; van der Wijngaart, W. Synthetic microfluidic paper: High surface area and high porosity polymer micropillar arrays. Lab Chip 2015, 16, 298–304. [Google Scholar] [CrossRef] [PubMed]
- Mohammadian, B.; Annavarapu, R.K.; Raiyan, A.; Nemani, S.K.; Kim, S.; Wang, M.; Sojoudi, H. Delayed Frost Growth on Nanoporous Microstructured Surfaces Utilizing Jumping and Sweeping Condensates. Langmuir 2020, 36, 6635–6650. [Google Scholar] [CrossRef] [PubMed]
- Mousavi, F.; Adibi, P.; Abedini, E. Numerical investigation of surface roughness effect on pool boiling heat transfer of Al2O3/water nanofluid. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2021, 236, 1535–1549. [Google Scholar] [CrossRef]
- Becker, K.P.; Chen, Y.; Wood, R.J. Mechanically Programmable Dip Molding of High Aspect Ratio Soft Actuator Arrays. Adv. Funct. Mater. 2020, 30, 2107062. [Google Scholar] [CrossRef]
- Jiang, Q.; Li, R.; Wang, F.; Shi, X.; Chen, F.; Huang, Y.; Wang, B.; Zhang, W.; Wu, X.; Wei, F.; et al. Ultrasensitive Airflow Sensors Based on Suspended Carbon Nanotube Networks. Adv. Mater. 2022, 34. [Google Scholar] [CrossRef] [PubMed]
- Hu, H.; Wang, D.; Tian, H.; Huang, Q.; Wang, C.; Chen, X.; Gao, Y.; Li, X.; Chen, X.; Zheng, Z.; et al. Bioinspired Hierarchical Structures for Contact-Sensible Adhesives. Adv. Funct. Mater. 2021, 32. [Google Scholar] [CrossRef]
- Barghi, F.; Entezari, M.; Chini, S.; Amirfazli, A. Effect of initial wetting state on plastron recovery through heating. Int. J. Heat Mass Transf. 2020, 156, 119705. [Google Scholar] [CrossRef]
- Barghi Golezani, F.; Abou Yassine, A.H.; Sojoudi, H. Impact Dynamics of Natural Snowflakes on Engineered Surfaces; Bulletin of the American Physical Society; APS: Indianapolis, IN, USA, 2022. [Google Scholar]
- Sim, S.; Jo, E.; Kang, Y.; Chung, E.; Kim, J. Highly Sensitive Flexible Tactile Sensors in Wide Sensing Range Enabled by Hierarchical Topography of Biaxially Strained and Capillary-Densified Carbon Nanotube Bundles. Small 2021, 17, 2105334. [Google Scholar] [CrossRef]
- Ghosh, T.; Fritz, E.-C.; Balakrishnan, D.; Zhang, Z.; Vrancken, N.; Anand, U.; Zhang, H.; Loh, N.D.; Xu, X.; Holsteyns, F.; et al. Preventing the Capillary-Induced Collapse of Vertical Nanostructures. ACS Appl. Mater. Interfaces 2022, 14, 5537–5544. [Google Scholar] [CrossRef]
- Hu, Y.; Yuan, H.; Liu, S.; Ni, J.; Lao, Z.; Xin, C.; Pan, D.; Zhang, Y.; Zhu, W.; Li, J.; et al. Chiral Assemblies of Laser-Printed Micropillars Directed by Asymmetrical Capillary Force. Adv. Mater. 2020, 32, e2002356. [Google Scholar] [CrossRef]
- Kim, I.; Mun, J.; Hwang, W.; Yang, Y.; Rho, J. Capillary-force-induced collapse lithography for controlled plasmonic nanogap structures. Microsyst. Nanoeng. 2020, 6, 65. [Google Scholar] [CrossRef] [PubMed]
- Annavarapu, R.K.; Kim, S.; Wang, M.; Hart, A.J.; Sojoudi, H. Explaining Evaporation-Triggered Wetting Transition Using Local Force Balance Model and Contact Line-Fraction. Sci. Rep. 2019, 9, 405. [Google Scholar] [CrossRef] [PubMed]
- Chandra, D. Capillary Force in High Aspect-Ratio Micropillar Arrays. Ph.D. Thesis, University of Pennsylvania, Philadelphia, PA, USA, 2009. [Google Scholar]
- Chandra, D.; Yang, S. Stability of High-Aspect-Ratio Micropillar Arrays against Adhesive and Capillary Forces. Acc. Chem. Res. 2010, 43, 1080–1091. [Google Scholar] [CrossRef] [PubMed]
- Chandra, D.; Yang, S. Capillary-Force-Induced Clustering of Micropillar Arrays: Is It Caused by Isolated Capillary Bridges or by the Lateral Capillary Meniscus Interaction Force? Langmuir 2009, 25, 10430–10434. [Google Scholar] [CrossRef] [PubMed]
- Kang, S.H.; Pokroy, B.; Mahadevan, L.; Aizenberg, J. Control of Shape and Size of Nanopillar Assembly by Adhesion-Mediated Elastocapillary Interaction. ACS Nano 2010, 4, 6323–6331. [Google Scholar] [CrossRef]
- De Volder, M.; Hart, A.J. Engineering Hierarchical Nanostructures by Elastocapillary Self-Assembly. Angew. Chem. Int. Ed. 2013, 52, 2412–2425. [Google Scholar] [CrossRef]
- Kim, T.-H.; Kim, J.; Kim, H.-Y. Evaporation-driven clustering of microscale pillars and lamellae. Phys. Fluids 2016, 28, 022003. [Google Scholar] [CrossRef]
- Kim, M.; Yoo, S.; Jeong, H.E.; Kwak, M.K. Fabrication of Salvinia-inspired surfaces for hydrodynamic drag reduction by capillary-force-induced clustering. Nat. Commun. 2022, 13, 5181. [Google Scholar] [CrossRef]
- Siéfert, E.; Hua, H.-A.B.; Brau, F. Capillary coalescence of two partially immersed slender structures. Extreme Mech. Lett. 2022, 55, 101823. [Google Scholar] [CrossRef]
- Dhar, P.; Jana, R. Menisci evaporation of electrokinetic liquid-film flows within inclined micro-confinements. Phys. Fluids 2022, 34, 042002. [Google Scholar] [CrossRef]
- Kralchevsky, P.; Paunov, V.; Ivanov, I.; Nagayama, K. Capillary meniscus interaction between colloidal particles attached to a liquid—Fluid interface. J. Colloid Interface Sci. 1992, 151, 79–94. [Google Scholar] [CrossRef]
- Shi, Z.; Jefimovs, K.; Stampanoni, M.; Romano, L. High aspect ratio arrays of Si nano-pillars using displacement Talbot lithography and gas-MacEtch. arXiv 2022, arXiv:2209.13672. [Google Scholar] [CrossRef]
- Pokroy, B.; Kang, S.H.; Mahadevan, L.; Aizenberg, J. Self-Organization of a Mesoscale Bristle into Ordered, Hierarchical Helical Assemblies. Science 2009, 323, 237–240. [Google Scholar] [CrossRef] [PubMed]
- Charpentier, J.-B.; de Motta, J.C.B.; Ménard, T. Capillary phenomena in assemblies of parallel cylindrical fibers: From statics to dynamics. Int. J. Multiph. Flow 2020, 129, 103304. [Google Scholar] [CrossRef]
- Garcia-Gonzalez, D.; Snoeijer, J.H.; Kappl, M.; Butt, H.-J. Onset of Elasto-capillary Bundling of Micropillar Arrays: A Direct Visualization. Langmuir 2020, 36, 11581–11588. [Google Scholar] [CrossRef]
- Beer, F.P.; Johnston, E.R., Jr.; DeWolf, J.T.; Mazurek, D.F. Statics and Mechanics of Materials; McGraw-Hill Education: New York, NY, USA, 2017. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barghi Golezani, F.; Kishore Annavarapu, R.; Sojoudi, H. Numerical Investigation of the Effect of Symmetry on Evaporation Triggered Elastocapillary Top-Gathering of High Aspect Ratio Micropillars. Coatings 2023, 13, 292. https://doi.org/10.3390/coatings13020292
Barghi Golezani F, Kishore Annavarapu R, Sojoudi H. Numerical Investigation of the Effect of Symmetry on Evaporation Triggered Elastocapillary Top-Gathering of High Aspect Ratio Micropillars. Coatings. 2023; 13(2):292. https://doi.org/10.3390/coatings13020292
Chicago/Turabian StyleBarghi Golezani, Farshad, Rama Kishore Annavarapu, and Hossein Sojoudi. 2023. "Numerical Investigation of the Effect of Symmetry on Evaporation Triggered Elastocapillary Top-Gathering of High Aspect Ratio Micropillars" Coatings 13, no. 2: 292. https://doi.org/10.3390/coatings13020292
APA StyleBarghi Golezani, F., Kishore Annavarapu, R., & Sojoudi, H. (2023). Numerical Investigation of the Effect of Symmetry on Evaporation Triggered Elastocapillary Top-Gathering of High Aspect Ratio Micropillars. Coatings, 13(2), 292. https://doi.org/10.3390/coatings13020292