A New Green Coating for the Protection of Frescoes: From the Synthesis to the Performances Evaluation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Chitosan and AgNPs Coating Base
2.2. Addition of Solvents
2.3. Mock-Ups Preparation
2.4. Benchmark Products Selected and Tested
2.5. Characterization Techniques for Coating
2.6. Characterization Techniques for Applied Coatings
2.7. Ageing Parameters
3. Results and Discussion
3.1. Coating Base Formulation and Characterization
3.2. Coating Application
3.3. Evaluation of the Coating Performances
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Costantini, I.; Aramendia, J.; Tomasini, E.; Castro, K.; Manuel Madariaga, J.; Arana, G. Detection of Unexpected Copper Sulfate Decay Compounds on Late Gothic Mural Paintings: Assessing the Threat of Environmental Impact. Microchem. J. 2021, 169, 106542. [Google Scholar] [CrossRef]
- Pérez-Diez, S.; Pitarch Martí, A.; Giakoumaki, A.; Prieto-Taboada, N.; Fdez-Ortiz de Vallejuelo, S.; Martellone, A.; De Nigris, B.; Osanna, M.; Madariaga, J.M.; Maguregui, M. When Red Turns Black: Influence of the 79 AD Volcanic Eruption and Burial Environment on the Blackening/Darkening of Pompeian Cinnabar. Anal. Chem. 2021, 93, 15870–15877. [Google Scholar] [CrossRef] [PubMed]
- Sesana, E.; Gagnon, A.S.; Ciantelli, C.; Cassar, J.A.; Hughes, J.J. Climate Change Impacts on Cultural Heritage: A Literature Review. Wiley Interdiscip. Rev. Clim. Chang. 2021, 12, e710. [Google Scholar] [CrossRef]
- Veneranda, M.; Prieto-Taboada, N.; de Vallejuelo, S.F.O.; Maguregui, M.; Morillas, H.; Marcaida, I.; Castro, K.; Madariaga, J.M.; Osanna, M. Biodeterioration of Pompeian Mural Paintings: Fungal Colonization Favoured by the Presence of Volcanic Material Residues. Environ. Sci. Pollut. Res. 2017, 24, 19599–19608. [Google Scholar] [CrossRef] [PubMed]
- Morena, S.; Bordese, F.; Caliano, E.; Freda, S.; De Feo, E.; Barba, S. Architectural Survey Techniques for Degradation Diagnostics. an Application for the Cultural Heritage. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci.—ISPRS Arch. 2021, 46, 449–454. [Google Scholar] [CrossRef]
- Unković, N.; Dimkić, I.; Stupar, M.; Stanković, S.; Vukojević, J.; Grbić, M.L. Biodegradative Potential of Fungal Isolates from Sacral Ambient: In Vitro Study as Risk Assessment Implication for the Conservation of Wall Paintings. PLoS ONE 2018, 13, e0190922. [Google Scholar] [CrossRef]
- Mang, S.M.; Scrano, L.; Camele, I. Preliminary Studies on Fungal Contamination of Two Rupestrian Churches from Matera (Southern Italy). Sustainability 2020, 12, 6988. [Google Scholar] [CrossRef]
- De Luca, D.; Caputo, P.; Perfetto, T.; Cennamo, P. Characterisation of Environmental Biofilms Colonising Wall Paintings of the Fornelle Cave in the Archaeological Site of Cales. Int. J. Environ. Res. Public Health 2021, 18, 8048. [Google Scholar] [CrossRef]
- Randazzo, L.; Montana, G.; Alduina, R.; Quatrini, P.; Tsantini, E.; Salemi, B. Flos Tectorii Degradation of Mortars: An Example of Synergistic Action between Soluble Salts and Biodeteriogens. J. Cult. Herit. 2015, 16, 838–847. [Google Scholar] [CrossRef]
- Pérez, M.C.; García-Diego, F.J.; Merello, P.; D’Antoni, P.; Fernández-Navajas, A.; Ribera I Lacomba, A.; Ferrazza, L.; Pérez-Miralles, J.; Baró, J.L.; Merce, P.; et al. Pinturas Murales de La Casa de Ariadna (Pompeya, Italia): Un Estudio Multidisciplinar de Su Estado Actual Enfocado a Una Futura Restauración y Conservación Preventiva. Mater. Constr. 2013, 63, 449–467. [Google Scholar] [CrossRef]
- Wollner, J.L. Planning Preservation In Pompeii: Revising Wall Painting Conservation Method and Management. Stud. Mediterr. Antiq. Class. 2013, 3, 5. [Google Scholar]
- D’Andrea, A.; DI Lillo, A.; Laino, A.; Pesaresi, P.M. Documenting Large Archaeological Sites, Managing Data, Planning Conservation and Maintenance: The Herculaneum Conservation Project Experience. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci.—ISPRS Arch. 2019, 42, 359–364. [Google Scholar] [CrossRef] [Green Version]
- Matteini, M.; Mazzeo, R.; Moles, A. Chemistry for Restoration: Painting and Restoration Materials; Nardini Editore: Florence, Italy, 2016; p. 343. [Google Scholar]
- Available online: https://www.cimminocalce.com/ (accessed on 12 May 2022).
- Vaz, M.F.; Pires, J.; Carvalho, A.P. Effect of the Impregnation Treatment with Paraloid B-72 on the Properties of Old Portuguese Ceramic Tiles. J. Cult. Herit. 2008, 9, 269–276. [Google Scholar] [CrossRef]
- Commentary on the ICOM-CC Resolution on Terminology for Conservation. The Working Method Note about the Task Force. In Proceedings of the 15th Triennial Conference, New Delhi, India, 22–26 September 2008.
- Brandi, C. Il Restauro. Teoria e Pratica (1939–1986); Saagi Arte, Editori Riuniti: Rome, Italy, 2009. [Google Scholar]
- Artesani, A.; Di Turo, F.; Zucchelli, M.; Traviglia, A. Recent Advances in Protective Coatings for Cultural. Coatings 2020, 10, 217. [Google Scholar] [CrossRef] [Green Version]
- Andreotti, S.; Franzoni, E.; Fabbri, P.; Fabbri, P. Poly(Hydroxyalkanoate)s-Based Hydrophobic Coatings for the Protection of Stone in Cultural Heritage. Materials 2018, 11, 165. [Google Scholar] [CrossRef] [Green Version]
- Ocak, Y.; Sofuoglu, A.; Tihminlioglu, F.; Böke, H. Protection of Marble Surfaces by Using Biodegradable Polymers as Coating Agent. Prog. Org. Coatings 2009, 66, 213–220. [Google Scholar] [CrossRef] [Green Version]
- Infurna, G.; Cavallaro, G.; Lazzara, G.; Milioto, S.; Dintcheva, N.T. Bionanocomposite Films Containing Halloysite Nanotubes and Natural Antioxidants with Enhanced Performance and Durability as Promising Materials for Cultural Heritage Protection. Polymers 2020, 12, 1973. [Google Scholar] [CrossRef]
- Ivanov, V.; Stabnikov, V. Basic Concepts on Biopolymers and Biotechnological Admixtures for Eco-Efficient Construction Materials; Elsevier Ltd.: Amsterdam, The Netherlands, 2016; ISBN 9780081002148. [Google Scholar]
- Giuliani, C.; Pascucci, M.; Riccucci, C.; Messina, E.; Salzano de Luna, M.; Lavorgna, M.; Ingo, G.M.; Di Carlo, G. Chitosan-Based Coatings for Corrosion Protection of Copper-Based Alloys: A Promising More Sustainable Approach for Cultural Heritage Applications. Prog. Org. Coatings 2018, 122, 138–146. [Google Scholar] [CrossRef]
- Silva da Conceição, D.K.; Nunes de Almeida, K.; Nhuch, E.; Raucci, M.G.; Santillo, C.; Salzano de Luna, M.; Ambrosio, L.; Lavorgna, M.; Giuliani, C.; Di Carlo, G.; et al. The Synergistic Effect of an Imidazolium Salt and Benzotriazole on the Protection of Bronze Surfaces with Chitosan-Based Coatings. Herit. Sci. 2020, 8, 40. [Google Scholar] [CrossRef]
- Trang, T.T.C.; Takaomi, K. Chitosan and Its Biomass Composites in Application for Water Treatment. Curr. Opin. Green Sustain. Chem. 2021, 29, 100429. [Google Scholar] [CrossRef]
- Goy, R.C.; De Britto, D.; Assis, O.B.G. A Review of the Antimicrobial Activity of Chitosan. Polimeros 2009, 19, 241–247. [Google Scholar] [CrossRef]
- Sanpui, P.; Murugadoss, A.; Prasad, P.V.D.; Ghosh, S.S.; Chattopadhyay, A. The Antibacterial Properties of a Novel Chitosan-Ag-Nanoparticle Composite. Int. J. Food Microbiol. 2008, 124, 142–146. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Hu, Y.; Zhang, Z.; Zhang, B. The Application of Thymol-Loaded Chitosan Nanoparticles to Control the Biodeterioration of Cultural Heritage Sites. J. Cult. Herit. 2022, 53, 206–211. [Google Scholar] [CrossRef]
- Indrie, L.; Bonet-Aracil, M.; Ilieș, D.C.; Albu, A.V.; Ilieș, G.; Herman, G.V.; Baias, Ș.; Costea, M. Heritage Ethnographic Objects—Antimicrobial Effects of Chitosan Treatment. Ind. Text. 2021, 72, 284–288. [Google Scholar] [CrossRef]
- Kim, J.S.; Kuk, E.; Yu, K.N.; Kim, J.H.; Park, S.J.; Lee, H.J.; Kim, S.H.; Park, Y.K.; Park, Y.H.; Hwang, C.Y.; et al. Antimicrobial Effects of Silver Nanoparticles. Nanomed. Nanotechnol. Biol. Med. 2007, 3, 95–101. [Google Scholar] [CrossRef]
- Wang, C.; Sun, M.; Wang, H.; Zhao, G. Cubic Halide Double Perovskite Nanocrystals with Anisotropic Free Excitons and Self-Trapped Exciton Photoluminescence. J. Phys. Chem. Lett. 2023, 14, 164–169. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Y.; Aravind, I.; Cai, Z.; Shen, L.; Zhang, B.; Wang, B.; Chen, J.; Zhao, B.; Shi, H.; et al. In Situ Investigation of Ultrafast Dynamics of Hot Electron-Driven Photocatalysis in Plasmon-Resonant Grating Structures. J. Am. Chem. Soc. 2022, 144, 3517–3526. [Google Scholar] [CrossRef]
- Hasebe, S.; Hagiwara, Y.; Komiya, J.; Ryu, M.; Fujisawa, H.; Morikawa, J.; Katayama, T.; Yamanaka, D.; Furube, A.; Sato, H.; et al. Photothermally Driven High-Speed Crystal Actuation and Its Simulation. J. Am. Chem. Soc. 2021, 143, 8866–8877. [Google Scholar] [CrossRef]
- Mokrzycki, W.S.; Tatol, M. Colour Difference ∆E—A Survey Mokrzycki. Mach. Graph. Vis. 2011, 20, 383–411. [Google Scholar]
- Cimino, D.; Lamuraglia, R.; Saccani, I.; Berzioli, M.; Izzo, F.C. Assessing the (In)Stability of Urban Art Paints: From Real Case Studies to Laboratory Investigations of Degradation Processes and Preservation Possibilities. Heritage 2022, 5, 581–609. [Google Scholar] [CrossRef]
- Costantini, R.; Vanden Berghe, I.; Izzo, F.C. New Insights into the Fading Problems of Safflower Red Dyed Textiles through a HPLC-PDA and Colorimetric Study. J. Cult. Herit. 2019, 38, 37–45. [Google Scholar] [CrossRef]
- Striova, J.; Camaiti, M.; Castellucci, E.M.; Sansonetti, A. Chemical, Morphological and Chromatic Behavior of Mural Paintings under Er:YAG Laser Irradiation. Appl. Phys. 2011, 104, 649–660. [Google Scholar] [CrossRef]
- UNI EN 15802:2010. Available online: http://store.uni.com/catalogo/uni-en-15802-2010?josso_back_to=http://store.uni.com/josso-security-check.php&josso_cmd=login_optional&josso_partnerapp_host=store.uni.com (accessed on 12 May 2022).
- UNI EN 15803:2010. Available online: http://store.uni.com/catalogo/uni-en-15803-2010 (accessed on 12 May 2022).
- Boanić, D.K.; Trandafilović, L.V.; Luyt, A.S.; Djoković, V. “Green” Synthesis and Optical Properties of Silver-Chitosan Complexes and Nanocomposites. React. Funct. Polym. 2010, 70, 869–873. [Google Scholar] [CrossRef]
- Nishimura, S.; Mott, D.; Takagaki, A.; Maenosono, S.; Ebitani, K. Role of Base in the Formation of Silver Nanoparticles Synthesized Using Sodium Acrylate as a Dual Reducing and Encapsulating Agent. Phys. Chem. Chem. Phys. 2011, 13, 9335–9343. [Google Scholar] [CrossRef]
- Berlangieri, C.; Poggi, G.; Murgia, S.; Monduzzi, M.; Dei, L.; Carretti, E. Structural, Rheological and Dynamics Insights of Hydroxypropyl Guar Gel-like Systems. Colloids Surfaces B Biointerfaces 2018, 168, 178–186. [Google Scholar] [CrossRef]
- Farhadi Khouzani, M.; Chevrier, D.M.; Güttlein, P.; Hauser, K.; Zhang, P.; Hedin, N.; Gebauer, D. Disordered Amorphous Calcium Carbonate from Direct Precipitation. CrystEngComm 2015, 17, 4842–4849. [Google Scholar] [CrossRef] [Green Version]
- Sanjuan, B.; Girard, J. Review of kinetic data on carbonate mineral precipitation. Tetrahedron 1996, 52, 13837–13866. [Google Scholar]
- Hussein Elsayed, N.; Najmi, A.H.; Mohamed, G.M.; Mohamed, A.A.; Al-Sayed, H.M.A. Preparation and Characterization of Paraloid B-72/TiO2 Nanocomposite and Their Effect on the Properties of Polylactic Acid as Strawberry Coating Agents. J. Food Saf. 2020, 40, e12838. [Google Scholar] [CrossRef]
- Ciccola, A.; Serafini, I.; Guiso, M.; Ripanti, F.; Domenici, F.; Sciubba, F.; Postorino, P.; Bianco, A. Spectroscopy for Contemporary Art: Discovering the Effect of Synthetic Organic Pigments on UVB Degradation of Acrylic Binder. Polym. Degrad. Stab. 2019, 159, 224–228. [Google Scholar] [CrossRef]
- Pintus, V.; Wei, S.; Schreiner, M. UV Ageing Studies: Evaluation of Lightfastness Declarations of Commercial Acrylic Paints. Anal. Bioanal. Chem. 2012, 402, 1567–1584. [Google Scholar] [CrossRef]
- Papliaka, Z.E.; Andrikopoulos, K.S.; Varella, E.A. Study of the Stability of a Series of Synthetic Colorants Applied with Styrene-Acrylic Copolymer, Widely Used in Contemporary Paintings, Concerning the Effects of Accelerated Ageing. J. Cult. Herit. 2010, 11, 381–391. [Google Scholar] [CrossRef]
- Shanti, R.; Bella, F.; Salim, Y.S.; Chee, S.Y.; Ramesh, S.; Ramesh, K. Poly(Methyl Methacrylate-Co-Butyl Acrylate-Co-Acrylic Acid): Physico-Chemical Characterization and Targeted Dye Sensitized Solar Cell Application. Mater. Des. 2016, 108, 560–569. [Google Scholar] [CrossRef]
- Hammoude, A.Y.; Obeida, S.M.; Abboushi, E.K.; Mahmou, A.M. FT-IR Spectroscopy for the Detection of Diethylene Glycol (DEG) Contaminant in Glycerin-Based Pharmaceutical Products and Food Supplements. Acta Chim. Slov. 2020, 67, 530–536. [Google Scholar] [CrossRef]
- Joshi, R.; Joshi, R.; Amanah, H.Z.; Faqeerzada, M.A.; Jayapal, P.K.; Kim, G.; Baek, I.; Park, E.-S.; Masithoh, R.E.; Cho, B.-K. Quantitative Analysis of Glycerol Concentration in Red Wine Using Fourier Transform Infrared Spectroscopy and Chemometrics Analysis. Korean J. Agric. Sci. 2021, 48, 299–310. [Google Scholar]
- Debandi, M.V.; Bernal, C.; Francois, N.J. Development of Biodegradable Films Based on Chitosan/Glycerol Blends Suitable for Biomedical Applications. J. Tissue Sci. Eng. 2016, 7, 3. [Google Scholar] [CrossRef]
- Leceta, I.; Peñalba, M.; Arana, P.; Guerrero, P.; De La Caba, K. Ageing of Chitosan Films: Effect of Storage Time on Structure and Optical, Barrier and Mechanical Properties. Eur. Polym. J. 2015, 66, 170–179. [Google Scholar] [CrossRef]
- Bussiere, P.O.; Gardette, J.L.; Rapp, G.; Masson, C.; Therias, S. New Insights into the Mechanism of Photodegradation of Chitosan. Carbohydr. Polym. 2021, 259, 117715. [Google Scholar] [CrossRef] [PubMed]
- Pino, F.; Fermo, P.; La Russa, M.; Ruffolo, S.; Comite, V.; Baghdachi, J.; Pecchioni, E.; Fratini, F.; Cappelletti, G. Advanced Mortar Coatings for Cultural Heritage Protection. Durability towards Prolonged UV and Outdoor Exposure. Environ. Sci. Pollut. Res. 2017, 24, 12608–12617. [Google Scholar] [CrossRef]
Reagent | Quantity |
---|---|
Chitosan | 30 mg |
Azelaic Acid | 9.5 mg |
Lactic Acid | 300 µL (5% v/v) |
Product | Average Viscosity [mPa·s] |
---|---|
Proconsol® | 2 |
Paraloid B72® | 3 |
Chitosan AgNPs product | 13 |
Contact Angle θ | After the Coating Application | After the Artificial Ageing |
---|---|---|
Proconsol® | 0° | 0° |
Paraloid B72® | 75° | 71° |
Chitosan AgNPs product | 51° | 44° |
Evaluation Parameters | Chitosan Gel | Proconsol® | Paraloid B72® |
---|---|---|---|
Compositional stability | 2 | 3 | 2 |
Morphology | 3 | 3 | 0 |
Color variance | 2 | 2 | 1 |
Gloss variance | 3 | 3 | 0 |
Hydrophobicity | 2 | 0 | 3 |
Water vapor permeability (δp) | 3 | 0 (n.a.) | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lamuraglia, R.; Campostrini, A.; Ghedini, E.; De Lorenzi Pezzolo, A.; Di Michele, A.; Franceschin, G.; Menegazzo, F.; Signoretto, M.; Traviglia, A. A New Green Coating for the Protection of Frescoes: From the Synthesis to the Performances Evaluation. Coatings 2023, 13, 277. https://doi.org/10.3390/coatings13020277
Lamuraglia R, Campostrini A, Ghedini E, De Lorenzi Pezzolo A, Di Michele A, Franceschin G, Menegazzo F, Signoretto M, Traviglia A. A New Green Coating for the Protection of Frescoes: From the Synthesis to the Performances Evaluation. Coatings. 2023; 13(2):277. https://doi.org/10.3390/coatings13020277
Chicago/Turabian StyleLamuraglia, Raffaella, Andrea Campostrini, Elena Ghedini, Alessandra De Lorenzi Pezzolo, Alessandro Di Michele, Giulia Franceschin, Federica Menegazzo, Michela Signoretto, and Arianna Traviglia. 2023. "A New Green Coating for the Protection of Frescoes: From the Synthesis to the Performances Evaluation" Coatings 13, no. 2: 277. https://doi.org/10.3390/coatings13020277
APA StyleLamuraglia, R., Campostrini, A., Ghedini, E., De Lorenzi Pezzolo, A., Di Michele, A., Franceschin, G., Menegazzo, F., Signoretto, M., & Traviglia, A. (2023). A New Green Coating for the Protection of Frescoes: From the Synthesis to the Performances Evaluation. Coatings, 13(2), 277. https://doi.org/10.3390/coatings13020277