Chemisorption and Surface Reaction of Hafnium Precursors on the Hydroxylated Si(100) Surface
Abstract
:1. Introduction
2. Computational Methods
3. Results and Discussion
3.1. Chemisorption and Surface Reaction of Hafnium Alkoxide Precursors
3.1.1. Hafnium Methoxide Precursor
3.1.2. Hafnium Isopropoxide Precursor
3.1.3. Hafnium Tert-Butoxide Precursor
3.2. Chemisorption and Surface Reaction of Hafnium Halide Precursors
3.2.1. Hafnium Iodide Precursor
3.2.2. Hafnium Chloride Precursor
3.2.3. Hafnium Fluoride Precursor
3.3. Chemisorption and Surface Reaction of Hafnium Amide Precursors
3.3.1. Tetrakis (Dimethylamino) Hafnium (TDMAH)
3.3.2. Tetrakis (Ethylmethylamino) Hafnium (TEMAH)
3.3.3. Tetrakis (Diethylamino) Hafnium (TDEAH)
3.4. Effect of Thermal Stability and Size of Precursors on Their Reactivates
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Correction Statement
References
- Suntola, T. Atomic layer epitaxy. Mater. Sci. Rep. 1989, 4, 261–312. [Google Scholar] [CrossRef]
- Suntola, T.; Hyvarinen, J. Atomic layer epitaxy. Annu. Rev. Mater. Sci. 1985, 15, 177–195. [Google Scholar] [CrossRef]
- Puurunen, R.L. A short history of atomic layer deposition: Tuomo Suntola’s atomic layer epitaxy. Chem. Vap. Depos. 2014, 20, 332–344. [Google Scholar] [CrossRef]
- Tai, T.B.; Cao, L.; Mattelaer, F.; Rampelberg, G.; Hashemi, F.S.M.; Dendooven, J.; van Ommen, J.R.; Detavernier, C.; Reyniers, M.-F. Atomic Layer Deposition of Al2O3 Using Aluminum Triisopropoxide (ATIP): A Combined Experimental and Theoretical Study. J. Phys. Chem. C 2019, 123, 485–494. [Google Scholar] [CrossRef]
- Shtepliuk, I.; Yakimova, R. Special Issue “Fundamentals and Recent Advances in Epitaxial Graphene on SiC”. Appl. Sci. 2021, 11, 3381. [Google Scholar] [CrossRef]
- Elliott, S.D.; Dey, G.; Maimaiti, Y.; Ablat, H.; Filatova, E.A.; Fomengia, G.N. Modeling mechanism and growth reactions for new nanofabrication processes by atomic layer deposition. Adv. Mater. 2015, 28, 5367–5380. [Google Scholar] [CrossRef] [PubMed]
- George, S.M. Atomic Layer Deposition: An Overview. Chem. Rev. 2010, 110, 111–131. [Google Scholar] [CrossRef]
- Mallick, B.C.; Hsieh, C.-T.; Yin, K.-M.; Gandomi, Y.A.; Huang, K.-T. Review—On Atomic Layer Deposition: Current Progress and Future Challenges. ECS J. Solid State Sci. Technol. 2019, 8, N55–N78. [Google Scholar] [CrossRef]
- Shahmohammadi, M.; Mukherjee, R.; Sukotjo, C.; Diwekar, U.M.; Takoudis, C.G. Recent Advances in Theoretical Development of Thermal Atomic Layer Deposition: A Review. Nanomaterials 2022, 12, 831. [Google Scholar] [CrossRef]
- Miikkulainen, V.; Leskela, M.; Ritala, M.; Puurunen, R.L. Crystallinity of Inorganic Films Grown by Atomic Layer Deposition: Overview and General Trends. J. Appl. Phys. 2013, 113, 021301. [Google Scholar] [CrossRef]
- Dingemans, G.; Kessels, W.M.M. Status and prospects of Al2O3-based surface passivation schemes for silicon solar cells. J. Vac. Sci. Technol. A 2012, 30, 040802. [Google Scholar] [CrossRef]
- Giannazzo, F.; Schilirò, E.; Nigro, R.L.; Roccaforte, F.; Yakimova, R. Atomic Layer Deposition of High-k Insulators on Epitaxial Graphene: A Review. Appl. Sci. 2020, 10, 2440. [Google Scholar] [CrossRef]
- Lee, J.-C.; Oh, S.-J.; Cho, M.; Hwang, C.S.; Jung, R. Chemical structure of the interface in ultrathin HfO2/Si films. Appl. Phys. Lett. 2004, 84, 1305–1307. [Google Scholar] [CrossRef]
- Kim, H.; Lee, H.-B.; Maeng, W.-J. Applications of atomic layer deposition to nanofabrication and emerging nanodevices. Thin Solid Films 2009, 517, 2563–2580. [Google Scholar] [CrossRef]
- Sandell, A.; Karlsson, P.; Richter, J.; Blomquist, J.; Uvdal, P. Surface chemistry of HfI4 on Si(100)-(2 × 1) studied by core level photoelectron spectroscopy. Surf. Sci. 2007, 601, 917–923. [Google Scholar] [CrossRef]
- Fedorenko, Y.; Swerts, J.; Maes, J.W.; Tois, E.; Haukka, S.; Wang, C.-G.; Wilk, G.; Delabie, A.; Deweerd, W.; De Gendt, S. Atomic Layer Deposition of Hafnium Silicate from HfCl4, SiCl4, and H2O. Electrochem. Solid-State Lett. 2007, 10, H149–H152. [Google Scholar] [CrossRef]
- Takahashi, N.; Nonobe, S.; Nakamura, T. Growth of HfO2 films using an alternate reaction of HfCl4 and O2 under atmospheric pressure. J. Solid State Chem. 2004, 177, 3944–3948. [Google Scholar] [CrossRef]
- Kukli, K.; Ritala, M.; Sajavaara, T.; Keinonen, J.; Leskela, M. Comparison of hafnium oxide films grown by atomic layer deposition from iodide and chloride precursors. Thin Solid Films 2002, 416, 72–79. [Google Scholar] [CrossRef]
- Nonobe, S.; Takahashi, N.; Nakamura, T. Preparation of HfO2 nano-films by atomic layer deposition using HfCl4 and O2 under atmospheric pressure. Solid State Sci. 2004, 6, 1217–1219. [Google Scholar] [CrossRef]
- Aarik, J.; Aidla, A.; Kikas, A.; Käämbre, T.; Rammula, R.; Ritslaid, P.; Uustare, T.; Sammelselg, V. Effects of precursors on nucleation in atomic layer deposition of HfO2. Appl. Surf. Sci. 2004, 230, 292–300. [Google Scholar] [CrossRef]
- Boher, P.; Defranoux, C.; Heinrich, P.; Wolstenholme, J.; Bender, H. VUV spectroscopic ellipsometry applied to the characterization of high-k dielectrics. Mater. Sci. Eng. B 2004, 109, 64–68. [Google Scholar] [CrossRef]
- Kang, S.-W.; Rhee, S.-W.; George, S.M. Infrared spectroscopic study of atomic layer deposition mechanism for hafnium silicate thin films using HfCl2[N(SiMe3)2]2 and H2O. J. Vac. Sci. Technol. A 2004, 22, 2392–2397. [Google Scholar] [CrossRef]
- Vitchev, R.; Pireaux, J.; Conard, T.; Bender, H.; Wolstenholme, J.; Defranoux, C. X-ray photoelectron spectroscopy characterisation of high-k dielectric Al2O3 and HfO2 layers deposited on SiO2/Si surface. Appl. Surf. Sci. 2004, 235, 21–25. [Google Scholar] [CrossRef]
- Kim, H.; Saraswat, K.C.; McIntyre, P.C. Comparative Study on Electrical and Microstructural Characteristics of ZrO2 and HfO2 Grown by Atomic Layer Deposition. J. Mater. Res. 2005, 20, 3125–3132. [Google Scholar] [CrossRef]
- Triyoso, D.H.; Hegde, R.I.; Gregory, R. Impact of Deposition Processes on Properties of Atomic-Layer-Deposited Hafnium Zirconate High-k Dielectrics. Electrochem. Solid-State Lett. 2007, 10, H354. [Google Scholar] [CrossRef]
- Swerts, J.; Peys, N.; Nyns, L.; Delabie, A.; Franquet, A.; Maes, J.W.; Van Elshocht, S.; De Gendt, S. Impact of Precursor Chemistry and Process Conditions on the Scalability of ALD HfO2 Gate Dielectrics. J. Electrochem. Soc. 2010, 157, G26–G31. [Google Scholar] [CrossRef]
- Liu, X.; Ramanathan, S.; Longdergan, A.; Srivastava, A.; Lee, E.; Seidel, T.E.; Barton, J.T.; Pang, D.; Gordon, R.G. ALD of Hafnium Oxide Thin Films from Tetrakis(ethylmethylamino)hafnium and Ozone. J. Electrochem. Soc. 2005, 152, G213. [Google Scholar] [CrossRef]
- Jin, H.; Oh, S.K.; Kang, H.J.; Cho, M.-H. Band gap and band offsets for ultrathin (HfO2)x(SiO2)1−x dielectric films on Si(100). Appl. Phys. Lett. 2006, 89, 122901. [Google Scholar] [CrossRef]
- Kim, Y.; Roh, Y.; Yoo, J.-B.; Kim, H. Characteristics of atomic layer deposition grown HfO2 films after exposure to plasma treatments. Thin Solid Films 2007, 515, 2984–2989. [Google Scholar] [CrossRef]
- Kirsch, P.D.; Quevedo-Lopez, M.A.; Li, H.-J.; Senzaki, Y.; Peterson, J.J.; Song, S.C.; Krishnan, S.A.; Moumen, N.; Barnett, J.; Bersuker, G.; et al. Nucleation and growth study of atomic layer deposited HfO2 gate dielectrics resulting in improved scaling and electron mobility. J. Appl. Phys. 2006, 99, 023508. [Google Scholar] [CrossRef]
- Park, P.K.; Roh, J.-S.; Choi, B.H.; Kang, S.-W. Interfacial Layer Properties of HfO2 Films Formed by Plasma-Enhanced Atomic Layer Deposition on Silicon. Electrochem. Solid-State Lett. 2006, 9, F34–F37. [Google Scholar] [CrossRef]
- Rose, M.; Bartha, J.; Endler, I. Temperature dependence of the sticking coefficient in atomic layer deposition. Appl. Surf. Sci. 2010, 256, 3778–3782. [Google Scholar] [CrossRef]
- Senzaki, Y.; Park, S.; Chatham, H.; Bartholomew, L.; Nieveen, W. Atomic layer deposition of hafnium oxide and hafnium silicate thin films using liquid precursors and ozone. J. Vac. Sci. Technol. A 2004, 22, 1175–1181. [Google Scholar] [CrossRef]
- Son, S.Y.; Kumar, P.; Cho, H.; Min, K.J.; Kang, C.J.; Singh, R.K. An evaluation of thermal stability of TiB2 metal gate on Hf silicate for p-channel metal oxide semiconductor application. Appl. Phys. Lett. 2008, 92, 172106. [Google Scholar] [CrossRef]
- Wang, Y.; Dai, M.; Ho, M.-T.; Wielunski, L.S.; Chabal, Y.J. Infrared characterization of hafnium oxide grown by atomic layer deposition using ozone as the oxygen precursor. Appl. Phys. Lett. 2007, 90, 022906. [Google Scholar] [CrossRef]
- Won, S.-J.; Kim, J.-Y.; Choi, G.-J.; Heo, J.; Hwang, C.S.; Kim, H.J. The formation of an almost full atomic monolayer via surface modification by N2O-plasma in atomic layer deposition of ZrO2 thin films. Chem. Mater. 2009, 21, 4374–4379. [Google Scholar] [CrossRef]
- Kamiyama, S.; Miura, T.; Nara, Y. Electrical properties of ultrathin HfO2 films for replacement metal gate transistors, fabricated by atomic layer deposition using Hf(N(CH3)(C2H5))4 and O3. Appl. Phys. Lett. 2005, 87, 132904. [Google Scholar] [CrossRef]
- Tai, T.B.; Son, J.; Shin, H. A theoretical study of the atomic layer deposition of HfO2 on Si(1 0 0) surfaces using tetrakis(ethylmethylamino) hafnium and water. Appl. Surf. Sci. 2023, 612, 155702. [Google Scholar] [CrossRef]
- Kim, J.C.; Heo, J.S.; Cho, Y.S.; Moon, S.H. Atomic layer deposition of an HfO2 thin film using Hf(O-iPr)4. Thin Solid Films 2009, 517, 5695–5699. [Google Scholar] [CrossRef]
- Kukli, K.; Ritala, M.; Leskelä, M.; Sajavaara, T.; Keinonen, J.; Jones, A.; Roberts, J. Atomic layer deposition of hafnium dioxide films using hafnium bis(2-butanolate)bis(1-methoxy-2-methyl-2-propanolate) and water. Chem. Vap. Depos. 2003, 9, 315–320. [Google Scholar] [CrossRef]
- Rauwel, E.; Clavel, G.; Willinger, M.; Rauwel, P.; Pinna, N. Non-aqueous routes to metal oxide thin films by atomic layer deposition. Angew. Chem. 2008, 120, 3648–3651. [Google Scholar] [CrossRef]
- Niinistö, J.; Putkonen, M.; Niinistö, L.; Stoll, S.L.; Kukli, K.; Sajavaara, T.; Ritala, M.; Leskelä, M. Controlled growth of HfO2 thin films by atomic layer deposition from cyclopentadienyl-type precursor and water. J. Mater. Chem. 2005, 15, 2271–2275. [Google Scholar] [CrossRef]
- Dezelah, C.L.; Niinistö, J.; Kukli, K.; Munnik, F.; Lu, J.; Ritala, M.; Leskelä, M.; Niinistö, L. The atomic layer deposition of HfO2 and ZrO2 using advanced metallocene precursors and H2O as the oxygen source. Chem. Vap. Depos. 2008, 14, 358–365. [Google Scholar] [CrossRef]
- Sibanda, D.; Oyinbo, S.T.; Jen, T.-C. A review of atomic layer deposition modelling and simulation methodologies: Density functional theory and molecular dynamics. Nanotechnol. Rev. 2022, 11, 1332–1363. [Google Scholar] [CrossRef]
- Ren, J.; Zhang, Y.-T.; Zhang, D.W. Denssity functional theoretical study of initial stage of HfO2 atomic layer deposition on hydroxylated SiO2 surface. J. Mol. Struct. Theochem 2007, 803, 23–28. [Google Scholar] [CrossRef]
- Chen, W.; Sun, Q.-Q.; Xu, M.; Ding, S.-J.; Zhang, D.W.; Wang, L.-K. Atomic Layer Deposition of Hafnium Oxide from Tetrakis(ethylmethylamino)hafnium and Water Precursors. J. Phys. Chem. C 2007, 111, 6495–6499. [Google Scholar] [CrossRef]
- Cortez-Valadez, M.; Fierro, C.; Farias-Mancilla, J.; Vargas-Ortiz, A.; Flores-Acosta, M.; Ramírez-Bon, R.; Enriquez-Carrejo, J.; Soubervielle-Montalvo, C.; Mani-Gonzalez, P. Comparison of HfCl4, HfI4, TEMA-Hf, and TDMA-Hf as precursors in early growing stages of HfO2 films deposited by ALD: A DFT study. Chem. Phys. 2016, 472, 81–88. [Google Scholar] [CrossRef]
- Mui, C.; Musgarve, C.B. Atomic layer deposition of HfO2 using alkoxides as precursors. J. Phys. Chem. B 2004, 108, 15150–15164. [Google Scholar] [CrossRef]
- D’Acunto, G.; Tsyshevsky, R.; Shayesteh, P.; Gallet, J.J.; Bournel, F.; Rochet, F.; Pinsard, I.; Timm, R.; Head, A.R.; Kuklja, M.; et al. Biomolecular reaction mechanism in the amido complex-based atomic layer deposition of HfO2. Chem. Mater. 2003, 35, 529–538. [Google Scholar] [CrossRef]
- Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186. [Google Scholar] [CrossRef] [PubMed]
- Blöchl, P.E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979. [Google Scholar] [CrossRef] [PubMed]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef] [PubMed]
- Henkelman, G.; Uberuaga, B.P.; Jónsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 2000, 113, 9901–9904. [Google Scholar] [CrossRef]
- Henkelman, G.; Jónsson, H. Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. J. Chem. Phys. 2000, 113, 9978–9985. [Google Scholar] [CrossRef]
- Monkhorst, H.J.; Pack, J.D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192. [Google Scholar] [CrossRef]
- Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104–154119. [Google Scholar] [CrossRef]
- Momma, K.; Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 2011, 44, 1272–1276. [Google Scholar] [CrossRef]
- Macrae, C.F.; Sovago, I.; Cottrell, S.J.; Galek, P.T.A.; McCabe, P.; Pidcock, E.; Platings, M.; Shields, G.P.; Stevens, J.S.; Towler, M.; et al. Mercury 4.0: From visualization to analysis, design and prediction. J. Appl. Crystallogr. 2020, 53, 226–235. [Google Scholar] [CrossRef]
- Frisch, M.J. (Ed.) Gaussian 16, Revision C.01; Gaussian, Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Adamo, C.; Barone, V. Toward reliable density functional methods without adjustable parameters: The PBE0 model. J. Chem. Phys. 1999, 110, 6158–6170. [Google Scholar] [CrossRef]
- Petersson, G.A.; Bennett, A.; Tensfeldt, T.G.; Al-Laham, M.A.; Shirley, W.A.; Mantzaris, J. A complete basis set model chemistry. I. The total energies of closed-shell atoms and hydrides of the first-row elements. J. Chem. Phys. 1988, 89, 2193–2218. [Google Scholar] [CrossRef]
- Weigend, F.; Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Phys. Chem. Chem. Phys. 2005, 7, 3297–3305. [Google Scholar] [CrossRef] [PubMed]
- Kendall, R.A.; Dunning, T.H., Jr.; Harrison, R.J. Electron Affinities of the First-Row Atoms Revisited. Systematic Basis Sets and Wave Functions. J. Chem. Phys. 1992, 96, 6796–6806. [Google Scholar] [CrossRef]
- Woon, D.E.; Dunning, T.H., Jr. Gaussian Basis Sets for Use in Correlated Molecular Calculations. III. The atoms aluminum through argon. J. Chem. Phys. 1993, 98, 1358–1371. [Google Scholar] [CrossRef]
- Figgen, D.; Peterson, K.A.; Dolg, M.; Stoll, H. Energy-consistent pseudopotentials and correlation consistent basis sets for the 5d elements Hf–Pt. J. Chem. Phys. 2009, 130, 164108. [Google Scholar] [CrossRef] [PubMed]
- Peterson, K.A.; Figgen, D.; Goll, E.; Stoll, H.; Dolg, M. Systematically convergent basis sets with relativistic pseudopotentials. II. Small-core pseudopotentials and correlation consistent basis sets for the post-d group 16–18 elements. J. Chem. Phys. 2003, 119, 11113–11123. [Google Scholar] [CrossRef]
- Peterson, K.A.; Shepler, B.C.; Figgen, D.; Stoll, H. On the Spectroscopic and Thermochemical Properties of ClO, BrO, IO, and Their Anions. J. Phys. Chem. A 2006, 110, 13877–13883. [Google Scholar] [CrossRef]
- Pritchard, B.P.; Altarawy, D.; Didier, B.T.; Gibson, T.D.; Windus, T.L. New Basis Set Exchange: An Open, Up-to-date Resource for the Molecular Sciences Community. J. Chem. Inf. Model. 2019, 59, 4814–4820. [Google Scholar] [CrossRef]
- Feller, D. The role of databases in support of computational chemistry calculations. J. Comput. Chem. 1996, 17, 1571–1586. [Google Scholar] [CrossRef]
- Schuchardt, K.L.; Didier, B.T.; Elsethagen, T.; Sun, L.; Gurumoorthi, V.; Chase, J.; Li, J.; Windus, T.L. Basis Set Exchange: A Community Database for Computational Sciences. J. Chem. Inf. Model. 2007, 47, 1045–1052. [Google Scholar] [CrossRef] [PubMed]
- Chemcraft—Graphical Software for Visualization of Quantum Chemistry Computations. Version 1.8, Build 682. Available online: http://www.chemcraftprog.com (accessed on 1 December 2023).
- Hausmann, D.M.; Kim, E.; Becker, J.; Gordon, R.G. Atomic layer deposition of hafnium and zirconium oxides using metal amide precursors. Chem. Mater. 2002, 14, 4350–4358. [Google Scholar] [CrossRef]
- John, P.C.S.; Guan, Y.; Kim, Y.; Kim, S.; Paton, R.S. Prediction of organic homolytic bond dissociation enthalpies at near chemical accuracy with sub-second computational cost. Nat. Commun. 2020, 11, 2328. [Google Scholar] [CrossRef] [PubMed]
- Gani, T.Z.H.; Kulik, H.J. Understanding and breaking scaling relations in single-site catalysis: Methane to methanol conversion by FeIV═O. ACS Catal. 2018, 8, 975–986. [Google Scholar] [CrossRef]
- Kim, S.; Fioroni, G.M.; Park, J.-W.; Robichaud, D.J.; Das, D.D.; John, P.C.S.; Lu, T.; McEnally, C.S.; Pfefferle, L.D.; Paton, R.S.; et al. Experimental and theoretical insight into the soot tendencies of the methylcyclohexene isomers. Proc. Combust. Inst. 2019, 37, 1083–1090. [Google Scholar] [CrossRef]
- Gallegos, L.C.; Luchini, G.; John, P.C.S.; Kim, S.; Paton, R.S. Importance of engineered and learned molecular representations in predicting organic reactivity, selectivity, and chemical properties. Acc. Chem. Res. 2021, 54, 827–836. [Google Scholar] [CrossRef]
Precursors | ∆Eads. | ∆Eact1. | ∆Ereact1. | ∆Eact2. | ∆Ereact2. | ∆Edes. |
---|---|---|---|---|---|---|
Hf[OMe]4 | −126.0 | 5.4 | −40.9 | No TS | 33.0 | 41.0 |
Hf[OiPr]4 | −94.4 | 3.0 | −13.8 | 63.8 | −40.0 | 52.1 |
Hf[OtBu]4 | −92.9 | 70.2 | 64.1 | 34.1 | −107.4 | 53.7 |
HfI4 | −104.9 | 71.4 | −8.3 | 23.1 | ||
HfCl4 | −147.6 | 76.1 | 52.9 | 14.1 | ||
HfF4 | −192.1 | 97.4 | 97.3 | 30.1 | ||
Hf[NMe2]4 | −104.9 | 7.1 | −66.1 | 20.5 | ||
Hf[NEtMe]4 | −107.5 | 12.8 | −86.9 | 35.4 | ||
Hf[NEt2]4 | −85.7 | 28.4 | −129.2 | 34.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tai, T.B.; Lim, J.; Shin, H. Chemisorption and Surface Reaction of Hafnium Precursors on the Hydroxylated Si(100) Surface. Coatings 2023, 13, 2094. https://doi.org/10.3390/coatings13122094
Tai TB, Lim J, Shin H. Chemisorption and Surface Reaction of Hafnium Precursors on the Hydroxylated Si(100) Surface. Coatings. 2023; 13(12):2094. https://doi.org/10.3390/coatings13122094
Chicago/Turabian StyleTai, Truong Ba, Jonghun Lim, and Hyeyoung Shin. 2023. "Chemisorption and Surface Reaction of Hafnium Precursors on the Hydroxylated Si(100) Surface" Coatings 13, no. 12: 2094. https://doi.org/10.3390/coatings13122094