The Emission of Volatile Components during Laboratory Vitrification When Using Fly Ash and Other Waste to Obtain Ceramic Coatings
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rincón, J.M.; Romero, M.; Boccaccini, A.R. Microstructural characterisation of a glass and a glass-ceramic obtained from municipal incinerator fly ash. J. Mater. Sci. 1999, 34, 4413–4423. [Google Scholar] [CrossRef]
- Sanito, R.C.; Bernuy-Zurnaeta, M.; You, S.-J.; Wang, Y.-F. A review on vitrification technologies of hazardous waste. J. Environ. Manag. 2022, 316, 115243. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.J.; Heo, J. Vitrification of fly ash from municipal solid waste incinerator. J. Hazard. Mater. 2002, 91, 83–93. [Google Scholar] [CrossRef] [PubMed]
- Bingham, P.A.; Hand, R.J. Vitrification of toxic wastes: A brief review. Adv. Appl. Ceram. 2006, 105, 21–31. [Google Scholar] [CrossRef]
- Geiger, G. Environmental and Health Issues in the Glass Industry. Ceram. Bull. 1995, 71, 193–199. [Google Scholar]
- Vinós, J.A. La fabricación del vidrio y la protección del medio ambiente. Bol. Soc. Esp. Ceram. Vidr. 1988, 27, 283–289. [Google Scholar]
- Jordan, M.M.; Boix, A.; Mateu, J.; Sanfeliu, T. Estudio de los niveles de partículas y dióxido de azufre en un área industrial ceramica. Tec. Cerámica 1997, 268, 1003–1007. [Google Scholar]
- Sánchez-Muñoz, L.; Carda, J.B. Materias Primas y Aditivos. Tomo 2.2. Enciclopedia de la Cerámica; Faenza Editrice Ibérica: Castellón, Spain, 2003. [Google Scholar]
- Lam, C.H.K.; Ip, A.W.M.; Barford, J.P.; McKay, G. Use of Incineration MSW Ash: A Review. Sustainability 2010, 2, 1943–1968. [Google Scholar] [CrossRef]
- Barbieri, L.; Karamanov, A.; Corradi, A.; Lancellotti, I.; Pelino, M.; Rincón, J.M. Structure, chemical durability, and crystallization behavior of incinerator-based glassy systems. J. Non-Cryst. Solids 2008, 354, 521–528. [Google Scholar] [CrossRef]
- Rawlings, R.D.; Wu, J.P.; Boccaccini, A.R. Glass-ceramics: Their production from wastes—A Review. J. Mater. Sci. 2006, 41, 733–761. [Google Scholar] [CrossRef]
- Alonso, M.C.; Luxan, M.P. Aplicaciones de las Cenizas Volantes en el Campo de la Construcción; IETcc-CSIC: Madrid, Spain, 1995; 115p. [Google Scholar]
- Barraco, F.; Demichelis, F.; Sharifikolouei, E.; Ferraris, M.; Fino, D.; Tommasi, T. Life cycle assessment for the production of MSWI fly-ash bases porous glass-ceramics: Scenarios based on the contribution of silica sources, methane aided, and energy recoveries. Waste Manag. 2023, 157, 301–311. [Google Scholar] [CrossRef] [PubMed]
- Ladrón de Guevara, J.; Moya, V. Toxicología Médica (Clínica e industrial); McGraw-Hill Interamericana de España: Madrid, Spain, 1995. [Google Scholar]
- Rincón, J.M.; Casasola, R. TEM Replica of a Fluoride-Miserite Glass-ceramic Glaze Microstructure. MTAEC9 2015, 49, 229–233. [Google Scholar] [CrossRef]
- Ito, T. Vitrification Fly Ash by Swirling-Flow Furnace. Waste Manag. 1996, 16, 453–460. [Google Scholar] [CrossRef]
- Karoly, Z.; Mohai, I.; Tóth, M.; Wéber, F. Production of glass-ceramics from fly-ash using arc plasma. J. Eur. Ceram. Soc. 2007, 27, 1721–1725. [Google Scholar] [CrossRef]
- Qi, C.; Lin, X.; Zhao, R.; Wang, Z.; Wang, G.; Liu, M.; Zhu, Z.; Niu, C. Composition modification and plasma vitrification of bottom ash from industrial hazardous waste incineration. J. Non-Cryst. Solids 2023, 619, 122579. [Google Scholar] [CrossRef]
- Rincon, J.M.; University Miguel Hernández, Elche, Alicante, Spain. Personal Video Communication, Video over Sampling of Gases, 2010. Private File. (In Spanish).
- Gentile, A.L.; Foster, W.R.; The American Ceramic Society, Columbus, OH, USA. Phase Diagrams for Ceramists. Private communication, 1961.
- Gentile, A.L.; Foster, W.R. Calcium hexaluminate and its stability relations in the system CaO-Al2O3-SiO2. J. Am. Ceram. Soc. 1963, 46, 74–76. [Google Scholar] [CrossRef]
- Sharifikolouen, E.; Baino, F.; Salvo, M.; Tommasi, T.; Pirone, R.; Fino, D.; Ferraris, M. Vitrification of municipal solid wste incineration fly ash: An approach to find the successful batch compositions. Ceram. Int. 2021, 47, 7738–7744. [Google Scholar] [CrossRef]
- Benavidez, E. (Ed.) Thermal Analysis Applied to Complex Systems: Slags, Glasses and Ceramics; Transworld Research Network: Trivandrum, Kerala, India, 2013; pp. 33–71. [Google Scholar]
- Fernández-Navarro, J.M. El Vidrio, 3rd ed.; CSIC: Madrid, Spain, 2003. [Google Scholar]
- Escribano, P.; Carda, J.B.; Cordoncillo, E. Esmaltes y Pigmentos Cerámicos; Faenza Editrice Ibérica: Castellón, Spain, 2001. [Google Scholar]
Recyclable Waste | Material | Use |
---|---|---|
Concrete from demolitions | Baked clay ceramic | Construction |
Glass from TV and PC screens | Glass mosaic (gresite) | Coating (facades, tunnels, hallways, etc.) |
All types of sludge: from hydrometallurgy, wastewater treatment plants, estuaries, rivers, lagoons, etc. | Porcelain stoneware tiles, construction bricks | Construction (flooring and ceramic coatings) |
Arc plasma slag | Porous glass–ceramics and large tiles | Construction and public works |
Fly ash from municipal solid waste incinerators or thermal power plants | Bricks, rustic flooring, glass (ceramic and glass–ceramic frits) | Facades in construction and for producing enamels |
Composite materials (composites: fiberglass polymers) | Ceramic tiles sintered from fibres | Flooring and coatings |
CaCO3 Calcite | KCl Sylvite | NaCl Halite | CaSO4 Anhydrite | CaClOH | |
---|---|---|---|---|---|
Fly ash 1 | 242.56 | 251.56 | 141.43 | 62.76 | 180.63 |
Fly ash 2 | 306.87 | 192.61 | 151.24 | 134.59 | --- |
Fly ash 3 | 112.49 | 95.05 | 141.28 | 181.03 | 100.50 |
Fly ash 4 | 82.01 | 192.51 | 155.09 | 106.63 | 196.42 |
Plane distance (nm) | 0.304 | 0.315 | 0.282 | 0.351 | 0.317 |
Bragg angle (2θ) | 29.32° | 28.27° | 31.63° | 25.43 | 28.07 |
Composition | Cullet Glass | Fly Ash 1 | Fly Ash 2 | Fly Ash 3 | Fly Ash 4 | Average Fly Ash | 100% Normalised | ||
---|---|---|---|---|---|---|---|---|---|
Glass-former oxides | SiO2 | 75.53 | 5.54 | 3.71 | 9.88 | 5.49 | 6.16 | 10.15 | |
Intermediate oxides | Al2O3 | 1.73 | 3.51 | 2.17 | 6.25 | 3.89 | 3.96 | 6.53 | |
Modifier oxides | Alkaline earths | CaO | 12.29 | 49.93 | 48.95 | 33.72 | 46.86 | 44.74 | 73.80 |
MgO | 1.68 | - | - | - | - | - | - | ||
Alkalines | Na2O | 7.62 | 7.83 | 6.60 | 5.31 | 6.35 | 5.77 | 9.52 | |
K2O | 1.15 | - | - | - | - | - | - |
GLASS 1 | GLASS 2 | |||||||
---|---|---|---|---|---|---|---|---|
50% Ash | 50% Cullet Glass | Theoretical | XRF wt% | 75% Ash | 25% Cullet Glass | Theoretical | XRF wt% | |
SiO2 | 3.08 | 37.77 | 40.85 | 55.54 | 4.61 | 18.88 | 23.49 | 50.28 |
Fe2O3 | 0.62 | - | 0.62 | 0.68 | 0.93 | - | 0.93 | 0.47 |
CaO | 22.37 | 6.15 | 28.52 | 15.21 | 33.56 | 3.07 | 36.63 | 16.98 |
Na2O | 2.89 | 3.81 | 6.70 | 6.49 | 4.33 | 1.91 | 6.24 | 3.48 |
K2O | 2.03 | 0.58 | 2.61 | 0.81 | 3.04 | 0.29 | 3.33 | 0.36 |
Al2O3 | 1.98 | 0.88 | 2.86 | 17.13 | 2.96 | 0.43 | 3.39 | 24.22 |
MgO | 0.69 | 0.84 | 1.53 | 1.89 | 1.04 | 0.42 | 1.46 | 2.35 |
TiO2 | 0.50 | - | 0.50 | 0.45 | 0.74 | - | 0.74 | 0.52 |
P2O5 | 0.38 | - | 0.38 | 0.48 | 0.56 | - | 0.56 | 0.58 |
SO2 | 4.42 | - | 4.42 | 0.72 | 6.63 | - | 6.63 | 0.35 |
Cl2 | 9.96 | - | 9.96 | 0.60 | 14.85 | - | 14.85 | 0.59 |
Original Mixture | Cl2 Emission | SO2 Emission |
---|---|---|
50–50 (for Glass 1) | 735–1300 °C | 1095–1300 °C |
75–25 (for Glass 2) | 655–1300 °C | 1000–1300 °C |
Agent | Task/Process | Filter Conc. (mg/Filter) | Conc. (mg/m3) |
---|---|---|---|
Chlorine | Vacuum measurement when only performing temperature cycling | 0.032 | 0.250 |
Measurement during the glass fusion process in the furnace | 0.068 | 0.994 | |
Difference between the furnace with a crucible and a vacuum furnace | 0.036 | 0.744 | |
Sulphur dioxide | Vacuum measurement when only performing temperature cycling | 2.12 | 19.22 |
Measurement during the glass fusion process in the furnace | 47.20 | 805.23 | |
Difference between the furnace with a crucible and a vacuum furnace | 45.08 | 786.01 |
Substance | Concentration (mg/Nm3) | Mass Emission (kg/t Melted) |
---|---|---|
Particles | 5–850 | 0.1–9.0 |
Nitrogen oxides (e.g., NO2) | 290–2000 | 0.4–16.0 |
Sulphur oxides (e.g., SO2) | <50–4000 | 0.4–32.0 |
Chlorine (HCl) | 0.1–20 | <0.01–0.16 |
Boron | 1–25 | <0.01–0.18 |
Fluoride (HF) | 0.1–100 | <0.01–0.8 |
Metals | <1–25 | <0.01–0.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almendro-Candel, M.B.; Callejas, P.; Montealegre, M.Á.; Rincón, J.M.; Jordán Vidal, M.M. The Emission of Volatile Components during Laboratory Vitrification When Using Fly Ash and Other Waste to Obtain Ceramic Coatings. Coatings 2023, 13, 1966. https://doi.org/10.3390/coatings13111966
Almendro-Candel MB, Callejas P, Montealegre MÁ, Rincón JM, Jordán Vidal MM. The Emission of Volatile Components during Laboratory Vitrification When Using Fly Ash and Other Waste to Obtain Ceramic Coatings. Coatings. 2023; 13(11):1966. https://doi.org/10.3390/coatings13111966
Chicago/Turabian StyleAlmendro-Candel, María Belén, Pío Callejas, María Ángeles Montealegre, Jesús María Rincón, and Manuel M. Jordán Vidal. 2023. "The Emission of Volatile Components during Laboratory Vitrification When Using Fly Ash and Other Waste to Obtain Ceramic Coatings" Coatings 13, no. 11: 1966. https://doi.org/10.3390/coatings13111966