Fabrication of Epoxy Composite Coatings with Micro-Nano Structure for Corrosion Resistance of Sintered NdFeB
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Chemicals
2.2. Preparation of Epoxy Coatings
2.2.1. Preparation of the Iron-Titanium Nanopaste (ITNP)
2.2.2. Preparation of the Coating Material
2.3. Preparation of Coating on the NdFeB
2.4. Measurement and Characterization
2.4.1. Sedimentation Experiments
2.4.2. Scanning Electron Microscope (SEM) Energy-Dispersive Spectrometer (EDS) Tests
2.5. Corrosion Tests
2.5.1. EIS Measurements
2.5.2. Salt Spray Test
3. Results and Discussion
3.1. Characterization of the Micro-/Nanomaterials
3.2. Anti-Corrosion Properties of Coatings
3.3. Mechanism Analysis of Anti-Corrosion Enhancement
4. Conclusions
- (1)
- ITNP is prepared from iron-titanium powder, which is modified and refined by the nano sand milling process. The sedimentation value of the ITNP is reduced to 3.3 cm after standing for 5 days compared with that of iron-titanium paste (6.5 cm), indicating the better stability of the ITNP. Furthermore, the particle size decreases to 100–500 nm with uniform distribution after nano sand milling compared with that before treatment (100 nm–10 μm). The commercial MNFS presents a 2D micro-/nanoflake structure of 5–15 μm diameter and nano-scale thickness.
- (2)
- A novel epoxy micro-/nano-composite coating material was prepared by adding ITNP and MNFS into epoxy resin, and then coating it on sintered NdFeB permanent magnets by air spraying, obtaining an epoxy composite coating with micro-/nanostructure. The result shows that the impedance modulus is 4.89 × 109 Ω·cm2, 1.72 × 1010 Ω·cm2, 2.14 × 1010 Ω·cm2 and 5.60 × 105 Ω·cm2, respectively, for EP/ITNP, EP/MNFS, EP/ITNP/MNFS and pure EP systems soaked in 3.5 wt.% NaCl solution for 32 days, indicating that the anticorrosion performance ranking of the coatings is pure EP < EP/ITNP < EP/MNFS < EP/ITNP/MNFS, which corresponds to the NSS results.
- (3)
- The mechanism of the anti-corrosion enhancement was proposed. ITNP enhances the anti-corrosion property by: (a) impeding the formation of micropores by nanoparticles. The disappearance of micropores improves the integrity and barrier performance of the coating, thus slowing down the diffusion of corrosive media. (b) INTP also improves the compactness and barrier capacity with a “bridge” structure between the nanoparticles. It also contributes to improving the interfacial compatibility of iron-titanium particles with a polymeric matrix. The MNFS enhances the anti-corrosion property by the self-assembly of MNFS during the formation of the coating, which obtains a dense shielding coating with a shell structure, thus forming a “labyrinth effect” in the coating. This structure can prolong the penetration path of destructive elements into the coating and metal substrate. Finally, the synergetic effect of ITNP and MNFS makes the EP/ITNP/MNFS coating exhibit excellent anti-corrosion effects.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kim, J.W.; Kim, S.H.; Song, S.Y.; Kim, Y.D. Nd–Fe–B permanent magnets fabricated by low temperature sintering process. J. Alloys Compd. 2013, 551, 180–184. [Google Scholar] [CrossRef]
- Gutfleisch, O.; Willard, M.A.; Bruck, E.; Chen, C.H.; Sankar, S.G.; Liu, J.P. Magnetic Materials and Devices for the 21st Century: Stronger, Lighter, and More Energy Efficient. Adv. Mater. 2011, 23, 821–842. [Google Scholar] [CrossRef] [PubMed]
- Davies, B.E.; Mottram, R.S.; Harris, I.R. Recent developments in the sintering of NdFeB. Mater. Chem. Phys. 2001, 67, 272–281. [Google Scholar] [CrossRef]
- Sagawa, M.; Fujimura, S.; Yamamoto, H.; Matsuura, Y.; Hiraga, K. Permanent-magnet materials based on the rare earth-iron-boron tetragonal compounds. IEEE Trans. Magn. 1984, 20, 1584–1589. [Google Scholar] [CrossRef]
- Xu, J.L.; Huang, Z.X.; Luo, J.M.; Zhong, Z.C. Effect of titania particles on the microstructure and properties of the epoxy resin coatings on sintered NdFeB permanent magnets. J. Magn. Magn. Mater. 2014, 355, 31–36. [Google Scholar] [CrossRef]
- Yang, H.Y.; Duan, L.S.; Zhang, P.J. Corrosion resistance of functionalized carbon nanotubes enhanced epoxy coatings on sintered NdFeB magnets. J. Coat. Technol. Res. 2022, 19, 1317–1329. [Google Scholar] [CrossRef]
- Duan, L.S.; Chen, J.; Zhang, P.J.; Xu, G.Q.; Lv, J.; Wang, D.M.; Shen, W.Q.; Wu, Y.C. Organic-inorganic composite passivation and corrosion resistance of zinc coated NdFeB magnets. J. Alloys Compd. 2023, 936, 168292. [Google Scholar] [CrossRef]
- Zhang, P.; Hu, M.J.; Ke, H.B.; Wu, M.; Huang, H.G. Tuning grain boundary fine structure in Nd65Ni35-added Nd-Fe-B based magnets. J. Magn. Magn. Mater. 2018, 465, 246–251. [Google Scholar] [CrossRef]
- Zeng, H.X.; Yu, Y.; Zhou, Q.; Zhang, J.S.; Liao, X.F.; Liu, Z.W. Clarifying the effects of La and Ce in the grain boundary diffusion sources on sintered NdFeB magnets. Mater. Res. Express 2019, 6, 106105. [Google Scholar] [CrossRef]
- Rehman, S.U.; Jiang, Q.Z.; He, L.K.; Xiong, H.D.; Liu, K.; Wang, L.; Yang, M.A.; Zhong, Z.C. Microstructure and magnetic properties of NdFeB alloys by co-doping alnico elements. Phys. Lett. A 2019, 383, 125878. [Google Scholar] [CrossRef]
- Fernengel, W.; Rodewald, W.; Blank, R.; Schrey, P.; Katter, M.; Wall, B. The influence of Co on the corrosion resistance of sintered Nd-Fe-B magnets. J. Magn. Magn. Mater. 1999, 196, 288–290. [Google Scholar] [CrossRef]
- Chen, J.; Xu, J.L.; Huang, J.; Dai, L.; Xue, M.S.; Luo, J.M. Corrosion resistance of T-ZnOw/PDMS-MAO composite coating on the sintered NdFeB magnet. J. Magn. Magn. Mater. 2021, 534, 168049. [Google Scholar] [CrossRef]
- Zhang, H.; Song, Y.W.; Song, Z.L. Electrodeposited nickel/alumina composite coating on NdFeB permanent magnets. Mater. Corros. 2008, 59, 324–328. [Google Scholar] [CrossRef]
- Ou, B.L.; Wang, Y.W.; Lu, Y. A review on fundamentals and strategy of epoxy-resin-based anticorrosive coating materials. Polym.-Plast. Technol. Mater. 2021, 60, 601–625. [Google Scholar] [CrossRef]
- Jin, F.L.; Li, X.; Park, S.J. Synthesis and application of epoxy resins: A review. J. Ind. Eng. Chem. 2015, 29, 1–11. [Google Scholar] [CrossRef]
- Zhang, M.X.; Zhao, X.Y.; Jia, H.; Xing, H.R.; Zhang, H.J.; Wang, X.Y.; Liu, C. Anticorrosion properties of modified basalt powder/epoxy resin coating. J. Coat. Technol. Res. 2022, 19, 1409–1420. [Google Scholar] [CrossRef]
- Fu, W.; Shi, S.; Ge, J.; Li, N.; Wang, Y. Research progress in epoxy resin coated anticorrosive filler. Mod. Chem. Ind. 2020, 40, 56–57. [Google Scholar] [CrossRef]
- Hua, Y.; Li, F.; Hu, N.; Fu, S.Y. Frictional characteristics of graphene oxide-modified continuous glass fiber reinforced epoxy composite. Compos. Sci. Technol. 2022, 223, 109446. [Google Scholar] [CrossRef]
- Yang, K.; Wu, Z.; Zhou, C.; Cai, S.; Wu, Z.; Tian, W.; Wu, S.; Ritchie, R.O.; Guan, J. Comparison of toughening mechanisms in natural silk-reinforced composites with three epoxy resin matrices. Compo. Part A: Appls. 2022, 154, 106760. [Google Scholar] [CrossRef]
- Yang, K.; Yazawa, K.; Tsuchiya, K.; Numata, K.; Guan, J. Molecular Interactions and Toughening Mechanisms in Silk Fibroin–Epoxy Resin Blend Films. Biomacromolecules 2019, 20, 2295–2304. [Google Scholar] [CrossRef]
- Shi, H.W.; Liu, F.C.; Yang, L.H.; Han, E.H. Characterization of protective performance of epoxy reinforced with nanometer-sized TiO2 and SiO2. Prog. Org. Coat. 2008, 62, 359–368. [Google Scholar] [CrossRef]
- AhadiParsa, M.; Dehghani, A.; Ramezanzadeh, M.; Ramezanzadeh, B. Rising of MXenes: Novel 2D-functionalized nanomaterials as a new milestone in corrosion science—A critical review. Adv. Colloid. Interfac. 2022, 307, 102730. [Google Scholar] [CrossRef]
- Luo, L.D.; Ma, Q.; Wang, Q.W.; Ding, L.F.; Gong, Z.Y.; Jiang, W.Z. Study of a Nano-SiO2 Microsphere-Modified Basalt Flake Epoxy Resin Coating. Coatings 2019, 9, 154. [Google Scholar] [CrossRef]
- Cao, Y.H.; Zheng, D.J.; Zhang, F.; Pan, J.S.; Lin, C.J. Layered double hydroxide (LDH) for multi-functionalized corrosion protection of metals: A review. J. Mater. Sci. Technol. 2022, 102, 232–263. [Google Scholar] [CrossRef]
- Furukawa, H.; Cordova, K.E.; O’Keeffe, M.; Yaghi, O.M. The chemistry and applications of metal-organic frameworks. Science 2013, 341, 1230444. [Google Scholar] [CrossRef] [PubMed]
- Cao, S.; Li, B.; Zhu, R.M.; Pang, H. Design and synthesis of covalent organic frameworks towards energy and environment fields. Chem. Eng. J. 2019, 355, 602–623. [Google Scholar] [CrossRef]
- Ding, R.; Li, W.H.; Wang, X. A brief review of corrosion protective films and coatings based on graphene and graphene oxide. J. Alloys Compd. 2018, 764, 1039–1055. [Google Scholar] [CrossRef]
- Zhang, C.L.; Dai, X.Y.; Wang, Y.N.; Sun, G.E.; Li, P.H.; Qu, L.J.; Sui, Y.L.; Dou, Y.L. Preparation and corrosion resistance of ETEO modified graphene oxide/epoxy resin coating. Coatings 2019, 9, 46. [Google Scholar] [CrossRef]
- Caldwell, J.D.; Aharonovich, I.; Cassabois, G.; Edgar, J.H.; Gi, B.; Basov, D.N. Photonics with hexagonal boron nitride. Nat. Rev. Mater. 2019, 4, 552–567. [Google Scholar] [CrossRef]
- Manzeli, S.; Ovchinnikov, D.; Pasquier, D.; Yazyev, O.V.; Kis, A. 2D transition metal dichalcogenides. Nat. Rev. Mater. 2017, 2, 17033. [Google Scholar] [CrossRef]
- Gupta, D.; Chauhan, V.; Kumar, R. A comprehensive review on synthesis and applications of molybdenum disulfide (MoS2) material: Past and recent developments. Inorg. Chem. Commun. 2020, 121, 108200. [Google Scholar] [CrossRef]
- Gogotsi, Y.; Anasori, B. The Rise of MXenes. ACS Nano 2019, 13, 8491–8494. [Google Scholar] [CrossRef] [PubMed]
- ISO 9227; Corrosion Tests in Artificial Atmospheres Salt Spray Tests. ISO: Geneva, Switzerland, 2022.
- Wu, Y.M.; Jiang, F.W.; Qiang, Y.J.; Zhao, W.J. Synthesizing a novel fluorinated reduced graphene oxide-CeO2 hybrid nanofiller to achieve highly corrosion protection for waterborne epoxy coating. Carbon 2021, 176, 39–51. [Google Scholar] [CrossRef]
- Chen, C.; Qiu, S.H.; Cui, M.J.; Qin, S.L.; Yan, G.P.; Zhao, H.C.; Wang, L.P.; Xue, Q.J. Achieving high performance corrosion and wear resistant epoxy coatings via incorporation of noncovalent functionalized graphene. Carbon 2017, 114, 356–366. [Google Scholar] [CrossRef]
- Liu, C.B.; Qiu, S.H.; Du, P.; Zhao, H.C.; Wang, L.P. An ionic liquid-graphene oxide hybrid nanomaterial: Synthesis and anticorrosive applications. Nanoscale 2018, 10, 8115–8124. [Google Scholar] [CrossRef]
- Wu, Y.M.; Yu, J.J.; Zhao, W.J.; Wang, C.T.; Wu, B.; Lu, G.M. Investigating the anti-corrosion behaviors of the waterborne epoxy composite coatings with barrier and inhibition roles on mild steel. Prog. Org. Coat. 2019, 133, 8–18. [Google Scholar] [CrossRef]
Sample | Epoxy Resin (EP) | Iron-Titanium Nanopaste (ITNP) | Micro-/Nanostructured Flake Silver Powder (MNFS) |
---|---|---|---|
EP/ITNP | 200 | 10 | 0 |
EP/MNFS | 200 | 0 | 15 |
EP/ITNP/MNFS | 200 | 10 | 15 |
Pure EP | 200 | 0 | 0 |
Sample | 4 d | 16 d | 32 d |
---|---|---|---|
EP/ITNP | 1.95 × 1010 | 1.98 × 1010 | 4.89 × 109 |
EP/MNFS | 2.47 × 1010 | 2.05 × 1010 | 1.72 × 1010 |
EP/ITNP/MNFS | 2.59 × 1010 | 2.38 × 1010 | 2.14 × 1010 |
Pure EP | 2.15 × 1010 | 1.86 × 1010 | 5.60 × 105 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Jiang, L.; Yang, Z.; Wang, L.; Gao, Z.; Shen, Q.; Fan, X.; Yang, H. Fabrication of Epoxy Composite Coatings with Micro-Nano Structure for Corrosion Resistance of Sintered NdFeB. Coatings 2023, 13, 1897. https://doi.org/10.3390/coatings13111897
Liu J, Jiang L, Yang Z, Wang L, Gao Z, Shen Q, Fan X, Yang H. Fabrication of Epoxy Composite Coatings with Micro-Nano Structure for Corrosion Resistance of Sintered NdFeB. Coatings. 2023; 13(11):1897. https://doi.org/10.3390/coatings13111897
Chicago/Turabian StyleLiu, Jie, Libei Jiang, Zukun Yang, Li Wang, Zhibiao Gao, Qianhong Shen, Xianping Fan, and Hui Yang. 2023. "Fabrication of Epoxy Composite Coatings with Micro-Nano Structure for Corrosion Resistance of Sintered NdFeB" Coatings 13, no. 11: 1897. https://doi.org/10.3390/coatings13111897
APA StyleLiu, J., Jiang, L., Yang, Z., Wang, L., Gao, Z., Shen, Q., Fan, X., & Yang, H. (2023). Fabrication of Epoxy Composite Coatings with Micro-Nano Structure for Corrosion Resistance of Sintered NdFeB. Coatings, 13(11), 1897. https://doi.org/10.3390/coatings13111897