Study on the Preparation of Nd–Doped Zinc Cobalt Oxide Porous Film and Its Electrochemical Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Instruments
2.2. Preparation of Substrate
2.3. Preparation of ZnCo2O4
2.4. Preparation of Nd–ZnCo2O4 Materials
2.5. Preparation of Supercapacitor Separators
2.6. Assembly of Asymmetric Supercapacitors
3. Results and Discussion
3.1. SEM and TEM Characterization of Materials
3.2. Result from Analysis and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lin, J.; Yao, L.; Li, Z.; Zhang, P.; Zhong, W.; Yuan, Q.; Deng, L. Hybrid hollow spheres of carbon@CoxNi1−xMoO4 as advanced electrodes for high performance asymmetric supercapacitors. Nanoscale 2019, 11, 3281–3291. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Huang, X.; Wang, H.; Teo, S.H.; Ma, T. Free-standing NiCo2S4@VS2 nanoneedle array composite electrode for high performance asymmetric supercapacitor application. J. Alloys Compd. 2018, 771, 274–280. [Google Scholar] [CrossRef]
- Shkir, M.; Alshahrani, T. Impact of Nd doping in Bi2S3 thin films coated by nebulizer spray pyrolysis technique for photodetector applications. Opt. Mater. 2023, 140, 113837. [Google Scholar] [CrossRef]
- Zardkhoshoui, A.M.; Davarani, S.S.H. Construction of complex copper-cobalt selenide hollow structures as an attractive battery-type electrode material for hybrid supercapacitors. Chem. Eng. J. 2020, 402, 126241. [Google Scholar] [CrossRef]
- Zardkhoshoui, A.M.; Davarani, S.S.H. Formation of graphene-wrapped multi shelled NiGa2O4 hollow spheres and graphene-wrapped yolk-shell NiFe2O4 hollow spheres derived from metal–organic frameworks for high-performance hybrid supercapacitors. Nanoscale 2020, 12, 1643–1656. [Google Scholar] [CrossRef]
- Zardkhoshoui, A.M.; Ashtiani, M.M.; Sarparast, M.; Davarani, S.S.H. Enhanced the energy density of supercapacitors via rose-like nanoporous ZnGa2S4 hollow spheres cathode and yolk-shell FeP hollow spheres anode. J. Power Sources 2020, 450, 227691. [Google Scholar] [CrossRef]
- Chen, H.; Jiang, G.; Yu, W.; Liu, D.; Liu, Y.; Li, L.; Huang, Q.; Tong, Z. Electrospun carbon nanofibers coated with urchin-like ZnCo2O4 nanosheets as a flexible electrode material. J. Mater. Chem. A 2016, 4, 5958–5964. [Google Scholar] [CrossRef]
- Venkatachalam, V.; Alsalme, A.; Alswieleh, A.; Jayavel, R. Double hydroxide mediated synthesis of nanostructured ZnCo2O4 as high performance electrode material for supercapacitor applications. Chem. Eng. J. 2023, 321, 474–483. [Google Scholar] [CrossRef]
- Wei, Y.; Li, Z.; Gao, Y.; Wang, Q. The influence of Ce doping on catalytic oxidation of toluene over Co3O4/iron mesh monolithic catalyst. Catal. Today 2023, 418, 114107. [Google Scholar] [CrossRef]
- Liu, B.; Liu, B.; Wang, Q.; Wang, X.; Xiang, Q.; Chen, D.; Shen, G. New Energy Storage Option: Toward ZnCo2O4 Nanorods/Nickel Foam Architectures for High-Performance Supercapacitors. ACS Appl. Mater. Interfaces 2013, 5, 10011–10017. [Google Scholar] [CrossRef]
- Gao, H.; Wang, Y.; Shen, H.; Wu, Z.; Song, J.; Yu, J.; Liu, C.; Jing, H.; Zhao, P.; Lei, W.; et al. Facial design and synthesis of Ce doped Co–Ni oxide nanocages with cubic structure for high-performance asymmetric supercapacitors. Appl. Surf. Sci. 2023, 615, 156132. [Google Scholar] [CrossRef]
- Dai, H.; Zhao, Y.; Zhang, Z.; Yang, J.; Liu, S.; Zhou, J.; Sun, G. Ostwald ripening and sulfur escaping enabled chrysanthemum-like architectures composed of NiS2/NiS@ C heterostructured petals with enhanced charge storage capacity and rate capability. J. Electroanal. Chem. 2022, 921, 116671. [Google Scholar] [CrossRef]
- Huang, J.; Wang, Y.; Chen, K.; Liu, T.; Wang, Q. Boosting the photoelectrochemical water oxidation performance of bismuth vanadate by ZnCo2O4 nanoparticles. Chin. Chem. Lett. 2022, 33, 2060–2064. [Google Scholar] [CrossRef]
- Khan, M.I.; Muhammad, N.; Tariq, M.; Nishan, U.; Razaq, A.; Saleh, T.A.; Rahim, A. Nonenzymatic electrochemical dopamine sensing probe based on hexagonal shape zinc-doped cobalt oxide (Zn-Co2O4) nanostructure. Microchim. Acta 2021, 189, 37. [Google Scholar] [CrossRef]
- Liu, B.; Zhang, J.; Wang, X.; Chen, G.; Chen, D.; Zhou, C.; Shen, G. Hierarchical three-dimensional ZnCo2O4 nanowire arrays/carbon cloth anodes for a novel class of high-performance flexible lithium-ion batteries. Nano Lett. 2012, 12, 3005–3011. [Google Scholar] [CrossRef] [PubMed]
- Mi, X.; Tingwu, Z.; Xu, N.; Tianrui, W.; Meilian, Z.; Yupeng, S. Construction of hierarchical ZnCo2O4@CoSe core-shell nanosheets on Ni foam for high performance supercapacitor. Ionics 2021, 27, 5251–5261. [Google Scholar] [CrossRef]
- Peng, S.; Li, L.; Wu, H.B.; Madhavi, S.; Lou, X.W. Controlled Growth of NiMoO4 Nanosheet and Nanorod Arrays on Various Conductive Substrates as Advanced Electrodes for Asymmetric Supercapacitors. Adv. Energy Mater. 2015, 5, 1401172. [Google Scholar] [CrossRef]
- Javed, M.S.; Hussain, I.; Batool, S.; Siyal, S.H.; Najam, T.; Shah, S.S.A.; Imran, M.; Assiri, M.M.; Hussain, S. Energy storage properties of hydrothermally processed ultrathin 2D binder-free ZnCo2O4 nanosheets. Nanotechnology 2021, 32, 385402. [Google Scholar] [CrossRef]
- Wei, X.; Wu, H.; Li, L. 3D N–doped carbon continuous network supported P-doped ZnCo2O4 nanosheets with rich oxygen vacancies for high performance asymmetric pseudocapacitor. J. Alloys Compd. 2020, 861, 158544. [Google Scholar] [CrossRef]
- Wang, Q.; Zhu, L.; Sun, L.; Liu, Y.; Jiao, L. Facile synthesis of hierarchical porous ZnCo2O4 microspheres for high-performance supercapacitors. J. Mater. Chem. A 2015, 3, 982–985. [Google Scholar] [CrossRef]
- Huang, Y.; Feng, X.; Li, C.; Li, Y.; Chen, X.; Gao, X.; Chen, C.; Guang, Z.; Liu, P. Construction of hydrangea-like ZnCo2O4/Ni3V2O8 hierarchical nanostructures for asymmetric all solid state supercapacitors. Ceram. Int. 2019, 45, 15451–15457. [Google Scholar] [CrossRef]
- Wang, H.; Cai, W.; He, L.; Zhu, M.; Wang, Y. Anchoring ternary NiCoMn–S ultrathin nanosheets on porous ZnCo2O4 nanowires to form core-shell composites for high-performance asymmetric supercapacitor. J. Alloys Compd. 2021, 870, 159347. [Google Scholar] [CrossRef]
- Zhao, S.; Yu, X.; Chen, H.; Tao, K.; Hu, Y.; Han, L. Zeolitic imidazolate framework derived ZnCo2O4 hollow tubular nanofibers for long-life supercapacitors. RSC Adv. 2020, 10, 13922–13928. [Google Scholar] [CrossRef]
- Amiri, M.; Moosavifard, S.E.; Hosseiny Davarani, S.S.; Shamsipur, M. Novel Rugby-Ball-like FeCoCuS2 Triple-Shelled Hollow Nanostructures with Enhanced Performance for Supercapattery. Energy Fuels 2021, 35, 15108–15117. [Google Scholar] [CrossRef]
- Wang, X.; Yang, Y.; He, P.; Zhang, F.; Tang, J.; Guo, Z.; Que, R. Facile synthesis of MnO2@NiCo2O4 core-shell nanowires as good performance asymmetric supercapacitor. J. Mater. Sci. Mater. Electron. 2020, 31, 1355–1366. [Google Scholar] [CrossRef]
- Wu, S.; Yang, X.; Cui, T.; Feng, Q.; Zhou, S.; Xu, X.; Zhao, H.; Wu, L.; He, Y.; Yang, Q. Tubular-like NiS/Mo2S3 microspheres as electrode material for high-energy and long life asymmetric supercapacitors. Colloids Surf. A 2021, 628, 127332. [Google Scholar] [CrossRef]
- Ahmad, M.W.; Anand, S.; Shalini, K.; Ul-Islam, M.; Yang, D.J.; Choudhury, A. MnMoO4 nanorods-encapsulated carbon nanofibers hybrid mat as binder-free electrode for flexible asymmetric supercapacitors. Mater. Sci. Semicond. Process. 2021, 136, 106176. [Google Scholar] [CrossRef]
- Hou, J.F.; Gao, J.F.; Kong, L.B. Interfacial Engineering in Crystalline Cobalt Tungstate/Amorphous Cobalt Boride Heterogeneous Nanostructures for Enhanced Electrochemical Performances. ACS Appl. Energy Mater. 2020, 3, 11470–11479. [Google Scholar] [CrossRef]
- Govindan, R.; Hong, X.-J.; Sathishkumar, P.; Cai, Y.P.; Gu, F.L. Construction of metal-organic framework-derived CeO2/C integrated MoS2 hybrid for high-performance asymmetric supercapacitor. Electrochim. Acta 2020, 353, 136502. [Google Scholar] [CrossRef]
- Sun, J.; Li, S.; Han, X.; Liao, F.; Zhang, Y.; Gao, L.; Chen, H.; Xu, C. Rapid hydrothermal synthesis of snowflake-like ZnCo2O4/ZnO mesoporous microstructures with excellent electrochemical performances. Ceram. Int. 2019, 45, 12243–12250. [Google Scholar] [CrossRef]
Electrode Material | Current Density/(A·g−1) | Specific Capacitance/(F·g−1) | Number of Cycles | Capacitance Holdup (%) | Literature |
---|---|---|---|---|---|
ZnCo2O4@CoSe | 1.0 | 1974.44 | 5000 | 85.3 | [15] |
NiMoO4 literature | 5.0 | 847.7 | 10,000 | 89.2 | [16] |
ZnCo2O4@NF | 2.5 | 1250 | 10,000 | 96.5 | [17] |
ZnCo2O4@NC | 1.0 | 1581.5 | 500 | 90.6 | [18] |
ZnCo2O4 literature | 1.0 | 647.1 | 2000 | 91.5 | [19] |
ZnCo2O4/Ni3V2O8 | 1.0 | 1734 | 8000 | 96 | [20] |
ZnCo2O4/ZnO | 5.0 | 304 | 5000 | 68.7 | [21] |
Peonaceous ZnCo2O4 | 1.0 | 440 | 3000 | 67.7 | [22] |
Nd–ZnCo2O4 | 1.0 | 2380 | 10,000 | 99.5 | This paper |
The Device Name | Current Density (A·g−1) | Specific Capacity (F·g−1) | Cycle Stability (%) | Literature |
---|---|---|---|---|
ZnCo2O4@N1C2M1S–4//AC | 5 | 71.58 | 75 | [23] |
ZnCo2O4HTNs//AC | 0.5 | 182 | 97.42 | [24] |
RB–FCC//AC | 1 | 133.5 | 96.5 | [25] |
MnO2@NiCo2O4//AC | 1 | 114 | 67.5 | [26] |
NiS/Mo2S3–2//AC | 1 | 146 | 96 | [27] |
MnMoO4@CNF//AC | 0.1 | 102.56 | 92.1 | [28] |
Co–B/CoWO4//AC | 2 | 95.65 | [29] | |
CeO2/C/MoS2//AC | 2 | 110.55 | 92.8 | [30] |
ZnCo2O4//CNTs | 1 | 191 | 97.14 | This paper |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yue, X.; Wang, J.; Wu, H.; Hao, T.; Hao, J.; Liu, Y.; Ma, T.; Yi, X. Study on the Preparation of Nd–Doped Zinc Cobalt Oxide Porous Film and Its Electrochemical Properties. Coatings 2023, 13, 1723. https://doi.org/10.3390/coatings13101723
Yue X, Wang J, Wu H, Hao T, Hao J, Liu Y, Ma T, Yi X. Study on the Preparation of Nd–Doped Zinc Cobalt Oxide Porous Film and Its Electrochemical Properties. Coatings. 2023; 13(10):1723. https://doi.org/10.3390/coatings13101723
Chicago/Turabian StyleYue, Xinrui, Jing Wang, Hongyu Wu, Tingting Hao, Jian Hao, Yang Liu, Tenghao Ma, and Xiaolin Yi. 2023. "Study on the Preparation of Nd–Doped Zinc Cobalt Oxide Porous Film and Its Electrochemical Properties" Coatings 13, no. 10: 1723. https://doi.org/10.3390/coatings13101723
APA StyleYue, X., Wang, J., Wu, H., Hao, T., Hao, J., Liu, Y., Ma, T., & Yi, X. (2023). Study on the Preparation of Nd–Doped Zinc Cobalt Oxide Porous Film and Its Electrochemical Properties. Coatings, 13(10), 1723. https://doi.org/10.3390/coatings13101723