Synergistic Effect of Nanoclay and Barium Sulfate Fillers on the Corrosion Resistance of Polyester Powder Coatings
Abstract
:1. Introduction
2. Experimental Section and Methods
2.1. Materials
2.2. Preparation of Powder Coating Panels
2.3. Characterization
3. Results and Discussion
3.1. Morphologies and Properties
3.2. Electrochemical Measurements
3.2.1. OCP and Rp Measurement Results
3.2.2. Electrical Equivalent Circuit Analysis
3.3. Neutral Salt Spray Results
3.4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sørensen, P.A.; Kiil, S.; Dam-Johansen, K.; Weinell, C.E. Anticorrosive Coatings: A Review. J. Coat. Technol. Res. 2009, 6, 135–176. [Google Scholar] [CrossRef]
- Montemor, M.F. Functional and Smart Coatings for Corrosion Protection: A Review of Recent Advances. Surf. Coat. Technol. 2014, 258, 17–37. [Google Scholar] [CrossRef]
- Kalendova, A.; Veselý, D.; Kalenda, P. A Study of the Effects of Pigments and Fillers on the Properties of Anticorrosive Paints. Pigment. Resin Technol. 2006, 35, 83–94. [Google Scholar] [CrossRef]
- Abdel-Gaber, A.M.; El Nabey, B.A.A.; Khamis, E.; Abdelattef, O.A.; Aglan, H.; Ludwick, A. Influence of Natural Inhibitor, Pigment and Extender on Corrosion of Polymer Coated Steel. Prog. Org. Coat. 2010, 69, 402–409. [Google Scholar] [CrossRef]
- Sangaj, N.S.; Malshe, V.C. Permeability of Polymers in Protective Organic Coatings. Prog. Org. Coat. 2004, 50, 28–39. [Google Scholar] [CrossRef]
- Negele, O.; Funke, W. Internal Stress and Wet Adhesion of Organic Coatings. Prog. Org. Coat. 1996, 28, 285–289. [Google Scholar] [CrossRef]
- Yang, M.S.; Huang, J.; Zhang, H.; Noël, J.J.; Hedberg, Y.S.; Chen, J.; Eduok, U.; Barker, I.; Henderson, J.D.; Xian, C.; et al. Study on the Self-Repairing Effect of Nanoclay in Powder Coatings for Corrosion Protection. Coatings 2023, 13, 1220. [Google Scholar] [CrossRef]
- Kotal, M.; Bhowmick, A.K. Polymer Nanocomposites from Modified Clays: Recent Advances and Challenges. Prog. Polym. Sci. 2015, 51, 127–187. [Google Scholar] [CrossRef]
- Al-Shahrani, A.; Taie, I.; Fihri, A.; Alabedi, G. Polymer-Clay Nanocomposites for Corrosion Protection. In Current Topics in the Utilization of Clay in Industrial and Medical Applications; IntechOpen: London, UK, 2018. [Google Scholar] [CrossRef]
- Spyrou, E. Powder Coatings: Chemistry and Technology, 3rd ed.; Vincentz Network GmbH & Co KG: Hannover, Germany, 2012; ISBN 978-3-86630-824-4. [Google Scholar]
- Fu, J.; Krantz, M.; Zhang, H.; Zhu, J.; Kuo, H.; Wang, Y.M.; Lis, K. Investigation of the Recyclability of Powder Coatings. Powder Technol. 2011, 211, 38–45. [Google Scholar] [CrossRef]
- Perera, D.Y. Effect of Pigmentation on Organic Coating Characteristics. Prog. Org. Coat. 2004, 50, 247–262. [Google Scholar] [CrossRef]
- Li, W.; Franco, D.C.; Yang, M.S.; Zhu, X.; Zhang, H.; Shao, Y.; Zhang, H.; Zhu, J. Comparative Study of the Performances of Al(OH)3 and BaSO4 in Ultrafine Powder Coatings. Processes 2019, 7, 316. [Google Scholar] [CrossRef]
- Fan, X. Mechanics of Moisture for Polymers: Fundamental Concepts and Model Study. In Proceedings of the EuroSimE 2008—International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Micro-Systems 2008, Breisgau, Germany, 20–23 April 2008; pp. 1–14. [Google Scholar] [CrossRef]
- Yang, S.; Huang, J.; Chen, J.; Noël, J.J.; Barker, I.; Henderson, J.D.; He, P.; Zhang, H.; Zhang, H.; Zhu, J. A Comparative Study on the Anti-Corrosive Performance of Zinc Phosphate in Powder Coatings. Coatings 2022, 12, 217. [Google Scholar] [CrossRef]
- Raju, A.; Lakshmi, V.; Vishnu Prataap, R.K.; Resmi, V.G.; Rajan, T.P.D.; Pavithran, C.; Prasad, V.S.; Mohan, S. Adduct Modified Nano-Clay Mineral Dispersed Polystyrene Nanocomposites as Advanced Corrosion Resistance Coatings for Aluminum Alloys. Appl. Clay Sci. 2016, 126, 81–88. [Google Scholar] [CrossRef]
- Baby Suneetha, R.R.; Kulandaivel, S.; Vedhi, C. Synthesis, Characterisation and Electrochemical Application of Hybrid Nanocomposites of Polyaniline with Novel Clay Mineral. In Materials Today: Proceedings; Elsevier Ltd.: Amsterdam, The Netherlands, 2019; Volume 48, pp. 294–303. [Google Scholar]
- Shirehjini, F.T.; Danaee, I.; Eskandari, H.; Zarei, D. Effect of Nano Clay on Corrosion Protection of Zinc-Rich Epoxy Coatings on Steel 37. J. Mater. Sci. Technol. 2016, 32, 1152–1160. [Google Scholar] [CrossRef]
- Bouakaz, B.S.; Pillin, I.; Habi, A.; Grohens, Y. Synergy between Fillers in Organomontmorillonite/Graphene-PLA Nanocomposites. Appl. Clay Sci. 2015, 116–117, 69–77. [Google Scholar] [CrossRef]
- Crapper, G. Powder Coatings. In Polymer Science: A Comprehensive Reference; Elsevier: Amsterdam, The Netherlands, 2012; Volume 10, pp. 541–566. ISBN 9780080878621. [Google Scholar]
- Uddin, F. Montmorillonite: An Introduction to Properties and Utilization. In Current Topics in the Utilization of Clay in Industrial and Medical Applications; Zoveidavianpoor, M., Ed.; IntechOpen: London, UK, 2018; Volume i, pp. 1–23. [Google Scholar]
- Guo, F.; Aryana, S.; Han, Y.; Jiao, Y. A Review of the Synthesis and Applications of Polymer-Nanoclay Composites. Appl. Sci. 2018, 8, 1696. [Google Scholar] [CrossRef]
- ASTM D609; Standard Practice for Preparation of Cold-Rolled Steel Panels for Testing Paint, Varnish, Conversion Coatings, and Related Coating Products. ASTM International: West Conshohocken, PA, USA, 2017; pp. 1–3.
- ASTM D7091; Standard Practice for Nondestructive Measurement of Dry Film Thickness of Nonmagnetic Coatings Applied to Ferrous Metals and Nonmagnetic, Nonconductive Coatings Applied to Non-Ferrous Metals. ASTM International: West Conshohocken, PA, USA, 2013; pp. 1–7.
- Zhu, J.; Zhang, H. Ultrafine Powder Coatings: An Innovation. Powder Coat. 2005, 16, 39–47. [Google Scholar]
- ASTM D523; Standard Test Method for Specular Gloss. ASTM International: West Conshohocken, PA, USA, 2014; pp. 1–5.
- ASTM D5767; Standard Test Method for Instrumental Measurement of Distinctness-of-Image (DOI) Gloss of Coated Surfaces. ASTM International: West Conshohocken, PA, USA, 2018; pp. 1–7.
- ASTM D3359; Standard Test Methods for Measuring Adhesion by Tape Test. ASTM International: West Conshohocken, PA, USA, 2009; pp. 1–8.
- ASTM D3363; Standard Test Method for Film Hardness by Pencil Test. ASTM International: West Conshohocken, PA, USA, 2005.
- ASTM D2794; Standard Test Method for Resistance of Organic Coatings to the Effects of Rapid Deformation (Impact). ASTM International: West Conshohocken, PA, USA, 1993.
- Walter, G.W. A Critical Review of d.c. Electrochemical Tests for Painted Metals. Corros. Sci. 1986, 26, 39–47. [Google Scholar] [CrossRef]
- ASTM D610; Standard Practice for Evaluating Degree of Rusting on Painted Steel Surfaces. ASTM International: West Conshohocken, PA, USA, 2008; pp. 1–6.
- Loveday, D.; Peterspm, P.; Rodgers, B. Evalution of Organic Coatings with Electrochemical Impedance Spectroscopy Part 2: Application of EIS to Coatings. Coat. Tech. 2004, 1, 88–93. [Google Scholar]
- Margarit-Mattos, I.C.P. EIS and Organic Coatings Performance: Revisiting Some Key Points. Electrochim. Acta 2020, 354, 136725. [Google Scholar] [CrossRef]
- ASTM B117; Standard Practice for Operating Salt Spray (Fog) Apparatus. ASTM International: West Conshohocken, PA, USA, 2016.
- ASTM D1654; Standard Test Method for Evaluation of Painted or Coated Specimens Subjected to Corrosive Environments. ASTM International: West Conshohocken, PA, USA, 2008; pp. 1–4.
Symbol | Trade Name | Particle Size/µm | Density/(g/cm3) | ||
---|---|---|---|---|---|
D10, V | D50, V | D90, V | |||
C1 | Claytone® HT | 4.49 | 18.38 | 46.10 | 1.70 |
C2 | CLOISITE® 30B | 1.91 | 8.64 | 23.08 | 1.98 |
Filler Name | Purity | Oil Absorption/(g/100 g) | Median Particle Diameter (D50, V)/µm | Density/(g/cm3) |
---|---|---|---|---|
Sparwite® W-10 | ≥97% | 10.00 | 2.10 | 4.40 |
Component | Composition | Content/wt.% |
---|---|---|
Resin | Carboxylated polyester | 90.30 |
Curing Agent | TGIC | 6.80 |
Flow and Leveling Agent | Polyacrylate | 1.60 |
Degassing Agent | Benzoin | 0.80 |
Pigment | Carbon black | 0.50 |
Symbol | Nanoclay/g | Filler/g | Binder/g |
---|---|---|---|
Control-PB | 0.00 | 15.00 | 85.00 |
C1–02%-PB | 2.00 | 14.70 | 83.30 |
C1–04%-PB | 4.00 | 14.40 | 81.60 |
C1–06%-PB | 6.00 | 14.10 | 79.90 |
C1–08%-PB | 8.00 | 13.80 | 78.20 |
C1–16%-PB | 16.00 | 12.60 | 71.40 |
C2–02%-PB | 2.00 | 14.70 | 83.30 |
C2–04%-PB | 4.00 | 14.40 | 81.60 |
C2–06%-PB | 6.00 | 14.10 | 79.90 |
C2–08%-PB | 8.00 | 13.80 | 78.20 |
C2–16%-PB | 16.00 | 12.60 | 71.40 |
Time | CPEcoat | Rpore | CPEdl | Rct | Ws, RD | Ws, TD | Ws, P | χ2 | ||
---|---|---|---|---|---|---|---|---|---|---|
Days | Qc/ Ω−1∙cm−2∙sα | αcoat | Ω∙cm2 | Qd/ Ω−1∙cm−2∙sα | αdl | Ω∙cm2 | Ω∙cm2∙sP | S | ||
0 | 1.13 × 10−10 | 0.949 | 4.43 × 106 | 8.17 × 10−11 | 0.856 | 7.70 × 108 | 6.32 × 10−3 | |||
1 | 3.52 × 10−10 | 0.870 | 8.23 × 105 | 4.42 × 10−9 | 0.715 | 1.10 × 108 | 3.17 × 10−3 | |||
2 | 2.00 × 10−10 | 0.868 | 6.81 × 105 | 7.18 × 10−9 | 0.683 | 1.15 × 108 | 2.48 × 10−3 | |||
3 | 1.34 × 10−10 | 0.916 | 4.14 × 105 | 1.13 × 10−8 | 0.582 | 8.50 × 107 | 4.52 × 10−4 | |||
4 | 1.25 × 10−10 | 0.951 | 2.29 × 105 | 1.85 × 10−8 | 0.527 | 1.72 × 107 | 3.08 × 107 | 4.31 × 100 | 0.500 | 2.52 × 10−4 |
5 | 1.56 × 10−10 | 0.936 | 2.47 × 105 | 3.60 × 10−8 | 0.382 | 3.05 × 104 | 6.56 × 106 | 2.16 × 101 | 0.626 | 2.25 × 10−4 |
10 | 1.35 × 10−9 | 0.807 | 1.96 × 105 | 2.58 × 10−8 | 0.611 | 1.15 × 106 | 4.70 × 106 | 5.39 × 101 | 0.647 | 6.80 × 10−4 |
15 | 1.85 × 10−10 | 0.923 | 2.14 × 105 | 8.55 × 10−9 | 0.624 | 1.31 × 106 | 1.52 × 106 | 1.35 × 104 | 0.281 | 2.19 × 10−4 |
20 | 2.25 × 10−10 | 0.909 | 2.31 × 105 | 4.69 × 10−9 | 0.674 | 1.34 × 106 | 1.46 × 106 | 2.47 × 104 | 0.287 | 7.60 × 10−5 |
25 | 2.29 × 10−10 | 0.908 | 2.22 × 105 | 4.98 × 10−9 | 0.667 | 1.37 × 106 | 8.30 × 106 | 9.88 × 103 | 0.321 | 2.85 × 10−4 |
Time | CPEcoat | Rpore | CPEdl | Rct | Ws, RD | Ws, TD | Ws, P | χ2 | ||
---|---|---|---|---|---|---|---|---|---|---|
Days | Qc/ Ω−1∙cm−2∙sα | αcoat | Ω∙cm2 | Qd/ Ω−1∙cm−2∙sα | αdl | Ω∙cm2 | Ω∙cm2∙sP | S | ||
0 | 5.96 × 10−9 | 0.968 | 5.79 × 106 | 3.70 × 10−8 | 0.666 | 8.12 × 108 | 8.89 × 10−4 | |||
1 | 5.73 × 10−8 | 0.815 | 5.80 × 105 | 9.39 × 10−7 | 0.622 | 1.42 × 108 | 4.70 × 10−4 | |||
2 | 1.21 × 10−7 | 0.766 | 3.29 × 105 | 4.46 × 10−6 | 0.545 | 3.74 × 107 | 6.47 × 10−4 | |||
3 | 1.12 × 10−7 | 0.772 | 2.83 × 105 | 6.97 × 10−6 | 0.482 | 2.92 × 107 | 3.53 × 10−4 | |||
4 | 4.65 × 10−8 | 0.837 | 1.90 × 105 | 4.83 × 10−6 | 0.459 | 1.17 × 107 | 1.01 × 108 | 4.12 × 103 | 0.500 | 6.05 × 10−5 |
5 | 4.86 × 10−8 | 0.833 | 1.87 × 105 | 4.99 × 10−6 | 0.458 | 9.92 × 106 | 8.10 × 107 | 4.09 × 103 | 0. 500 | 6.72 × 10−5 |
10 | 2.03 × 10−7 | 0.726 | 2.26 × 105 | 1.67 × 10−5 | 0.453 | 6.74 × 106 | 1.61 × 106 | 1.83 × 103 | 0. 500 | 4.25 × 10−4 |
15 | 1.30 × 10−7 | 0.767 | 2.70 × 105 | 6.51 × 10−6 | 0.458 | 2.52 × 106 | 7.14 × 107 | 5.54 × 103 | 0.644 | 6.90 × 10−4 |
20 | 7.78 × 10−8 | 0.800 | 1.04 × 105 | 1.66 × 10−5 | 0.370 | 2.14 × 106 | 2.68 × 107 | 4.97 × 103 | 0.648 | 5.00 × 10−4 |
25 | 2.19 × 10−6 | 0.594 | 3.39 × 105 | 7.15 × 10−6 | 0.546 | 7.35 × 105 | 1.79 × 107 | 1.83 × 102 | 0.548 | 3.44 × 10−4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, J.; Yang, M.S.; Xian, C.; Noël, J.J.; Hedberg, Y.S.; Chen, J.; Eduok, U.; Barker, I.; Henderson, J.D.; Zhang, H.; et al. Synergistic Effect of Nanoclay and Barium Sulfate Fillers on the Corrosion Resistance of Polyester Powder Coatings. Coatings 2023, 13, 1680. https://doi.org/10.3390/coatings13101680
Huang J, Yang MS, Xian C, Noël JJ, Hedberg YS, Chen J, Eduok U, Barker I, Henderson JD, Zhang H, et al. Synergistic Effect of Nanoclay and Barium Sulfate Fillers on the Corrosion Resistance of Polyester Powder Coatings. Coatings. 2023; 13(10):1680. https://doi.org/10.3390/coatings13101680
Chicago/Turabian StyleHuang, Jinbao, Marshall Shuai Yang, Chengqian Xian, James Joseph Noël, Yolanda Susanne Hedberg, Jian Chen, Ubong Eduok, Ivan Barker, Jeffrey Daniel Henderson, Haiping Zhang, and et al. 2023. "Synergistic Effect of Nanoclay and Barium Sulfate Fillers on the Corrosion Resistance of Polyester Powder Coatings" Coatings 13, no. 10: 1680. https://doi.org/10.3390/coatings13101680