Influence of Anodizing by Electro-Chemical Oxidation on Fatigue and Wear Resistance of the EV31A-T6 Cast Magnesium Alloy
Abstract
1. Introduction
2. Materials and Methods
2.1. Microstructural Characterization
2.2. Tribological Tests
2.3. Fatigue Tests
3. Results
3.1. Microstructural Characterization
3.2. Dry Sliding Tests
3.3. Fatigue Tests
4. Conclusions
- Less intense micro arcs generated by the discharge regime in the ECO process resulted in a denser anodized layer than in PEO.
- In dry sliding tests vs. 100Cr6 bearing steel, the ECO-treated alloy showed a critical coating failure load one order of magnitude higher than the PEO-treated alloy.
- At 5 N normal load, the maximum wear depth of the ECO-treated alloy was one order of magnitude higher than for PEO-treated samples. In the same conditions, the coefficient of friction of the ECO-treated alloy was about 40% lower than that of PEO-treated samples.
- With the same surface finish, no decrease in fatigue strength was observed for ECO-treated samples compared to the untreated alloy, while the industrial PEO-treated samples induced a 15% fatigue strength decrease.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Housh, S.; Mikucki, B.; Stevenson, A. Selection and Application of Magnesium and Magnesium Alloys. In ASM Handbook, Volume 2: Properties and Selection: Nonferrous Alloys and Special-Purpose Materials; ASM International: Novelty, OH, USA, 1990; pp. 455–479. [Google Scholar]
- Peng, L.; Fu, P.; Li, Z.; Wang, Y.; Jiang, H. High cycle fatigue properties of cast Mg–xNd–0.2Zn–Zr alloys. J. Mater. Sci. 2014, 49, 7105–7115. [Google Scholar] [CrossRef]
- Pan, F.; Yang, M.; Chen, X. A Review on Casting Magnesium Alloys: Modification of Commercial Alloys and Development of New Alloys. J. Mater. Sci. Technol. 2016, 32, 1211–1221. [Google Scholar] [CrossRef]
- Peng, L.M.; Fu, P.H.; Li, Z.M.; Yue, H.Y.; Li, D.Y.; Wang, Y.X. High cycle fatigue behaviors of low pressure cast Mg-3Nd-0.2Zn-2Zr alloys. Mater. Sci. Eng. A 2014, 611, 170–176. [Google Scholar] [CrossRef]
- Wang, F.; Dong, J.; Jiang, Y.; Ding, W. Cyclic deformation and fatigue of extruded Mg-Gd-Y magnesium alloy. Mater. Sci. Eng. A 2013, 561, 403–410. [Google Scholar] [CrossRef]
- Stanford, N.; Barnett, M. Effect of composition on the texture and deformation behaviour of wrought Mg alloys. Scr. Mater. 2008, 58, 179–182. [Google Scholar] [CrossRef]
- Hadorn, J.P.; Hantzsche, K.; Yi, S.; Bohlen, J.; Letzig, D.; Agnew, S.R. Effects of solute and second-phase particles on the texture of Nd-containing Mg alloys. Metall. Mater. Trans. A 2012, 43, 1363–1375. [Google Scholar] [CrossRef]
- Mirza, F.A.; Chen, D.L.; Li, D.J.; Zeng, X.Q. Effect of rare earth elements on deformation behavior of an extruded Mg-10Gd-3Y-0.5Zr alloy during compression. Mater. Des. 2013, 46, 411–418. [Google Scholar] [CrossRef]
- Wu, G.; Fan, Y.; Gao, H.; Zhai, C.; Zhu, Y.P. The effect of Ca and rare earth elements on the microstructure, mechanical properties and corrosion behavior of AZ91D. Mater. Sci. Eng. A 2005, 408, 255–263. [Google Scholar] [CrossRef]
- Mohedano, M.; Arrabal, R.; Pardo, A.; Paucar, K.; Merino, M.C.; Matykina, E.; Mingo, B.; Garcés, G. Galvanic corrosion of rare earth modified AM50 and AZ91D magnesium alloys coupled to steel and aluminium alloys. Rev. Metal 2014, 50, e002. [Google Scholar]
- Riontino, G.; Lussana, D.; Massazza, M.; Barucca, G.; Mengucci, P.; Ferragut, R. Structure evolution of EV31 Mg alloy. J. Alloys Compd. 2008, 463, 200–206. [Google Scholar] [CrossRef]
- Magnesium Alloy Castings. Sand 2.8Nd–1.4Gd–0.4Zn–0.6Zr (EV31A–T6) Solution and Precipitation Heat Treated, Revision A; AMS4429; SAE International: Warrendale, PA, USA, 2012. [Google Scholar]
- Chandra, D.; Chauhan, N.R. Surface protective coatings on Mg alloys—A review. Mater. Today Proc. 2021, 47, 3819–3822. [Google Scholar] [CrossRef]
- Wang, J.; Pang, X.; Jahed, H. Surface protection of Mg alloys in automotive applications: A review. AIMS Mater. Sci. 2019, 6, 567–600. [Google Scholar] [CrossRef]
- Gray, J.E.; Luan, B. Protective coatings on magnesium and its alloys—A critical review. J. Alloys Compd. 2002, 336, 88–113. [Google Scholar] [CrossRef]
- Barati Darband, G.; Aliofkhazraei, M.; Hamghalam, P.; Valizade, N. Plasma electrolytic oxidation of magnesium and its alloys: Mechanism, properties and applications. J. Magnes. Alloys 2017, 5, 74–132. [Google Scholar] [CrossRef]
- Arrabal, R.; Mohedano, M.; Matykina, E. Electrochemical Surface Treatments for Mg Alloys. In Encyclopedia of Materials: Metals and Alloys, 1st ed.; Caballero, F.G., Ed.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 87–112. [Google Scholar]
- Blawert, C.; Bala Srinivasan, P. 6—Plasma electrolytic oxidation treatment of magnesium alloys. In Surface Engineering of Light Alloys, 1st ed.; Dong, H., Ed.; Woodhead Publishing: Cambridge, UK, 2010; pp. 155–183. [Google Scholar]
- Yerokhin, A.L.; Shatrov, A.; Samsonov, V.; Shashkov, P.; Leyland, A.; Matthews, A. Fatigue properties of Keronite® coatings on a magnesium alloy. Surf. Coat. Technol. 2004, 182, 78–84. [Google Scholar] [CrossRef]
- Vladimirov, B.V.; Krit, B.L.; Lyudin, V.B.; Morozova, N.V.; Rossiiskaya, A.D.; Suminov, I.V.; Epel’feld, A.V. Microarc oxidation of magnesium alloys: A review. Surf. Engin. Appl. Electrochem. 2014, 50, 195–232. [Google Scholar] [CrossRef]
- Klein, M.; Lu, X.; Blawert, C.; Kainer, K.U.; Zheludkevich, M.L.; Walther, F. Influence of plasma electrolytic oxidation coatings on fatigue performance of AZ31 Mg alloy. Corros. Mater. 2017, 68, 50–57. [Google Scholar] [CrossRef]
- Němcová, A.; Skeldon, P.; Thompson, G.E.; Morse, S.; Čížek, J.; Pacal, B. Influence of plasma electrolytic oxidation on fatigue performance of AZ61 magnesium alloy. Corros. Sci. 2014, 82, 58–66. [Google Scholar] [CrossRef]
- Hussein, R.O.; Northwood, D.O.; Su, J.F.; Nie, X. A study of the interactive effects of hybrid current modes on the tribological properties of a PEO (plasma electrolytic oxidation) coated AM60B Mg-alloy. Surf. Coat. Technol. 2013, 215, 421–430. [Google Scholar] [CrossRef]
- Saji, V.S. Review of rare-earth-based conversion coatings for magnesium and its alloys. Mater. Res. Technol. 2019, 8, 5012–5035. [Google Scholar] [CrossRef]
- Liu, C.; Lu, X.; Li, Y.; Chen, Q.; Zhang, T.; Wang, F. Influence of post-treatment process on corrosion and wear properties of PEO coatings on AM50 Mg alloy. J. Alloys Compd. 2021, 870, 159462. [Google Scholar] [CrossRef]
- Sola, R.; Tonelli, L.; Shashkov, P.; Bogdanoff, T.H.; Martini, C. Anodizing of AA6082-T5 by conventional and innovative treatments: Microstructural characterization and dry sliding behaviour. Wear 2020, 458–459, 203423. [Google Scholar] [CrossRef]
- De Oliveira, L.A.; dos Santos, S.L.; de Oliveira, V.A.; Antunes, R.A. Influence of Anodization on the Fatigue and Corrosion-Fatigue Behaviors of the AZ31B Magnesium Alloy. Metals 2021, 11, 1573. [Google Scholar] [CrossRef]
- Tonelli, L.; Pezzato, L.; Dolcet, P.; Dabalà, M.; Martini, C. Effects of graphite nano-particle additions on dry sliding behaviour of plasma-electrolytic-oxidation-treated EV31A magnesium alloy against steel in air. Wear 2018, 404–405, 122–132. [Google Scholar] [CrossRef]
- Ceschini, L.; Morri, A.; Angelini, V.; Messieri, S. Fatigue Behavior of the Rare Earth Rich EV31A Mg Alloy: Influence of Plasma Electrolytic Oxidation. Metals 2017, 7, 212. [Google Scholar] [CrossRef]
- International Organization for Standardization. ISO 1143:2021; Metallic Materials—Rotating Bar Bending Fatigue Testing. International Organization for Standardization: Geneva, Switzerland, 2021.
- Angelini, V.; Ceschini, L.; Morri, A.; Apelian, D. Influence of Heat Treatment on Microstructure and Mechanical Properties of Rare Earth-Rich Magnesium Alloy. Inter. Metalcast. 2017, 11, 382–395. [Google Scholar] [CrossRef]
- ASTM G77-17; Standard Test Method for Ranking Resistance of Materials to Sliding Wear Using Block-on-Ring Wear Test. ASTM International: West Conshohocken, PA, USA, 2017.
- Williams, J.A.; Dwyer-Joyce, R.S. Contact between solid surfaces. In Modern Tribology Handbook, 1st ed.; Bhushan, B., Ed.; CRC Press LLC: Boca Raton, FL, USA, 2000; pp. 121–162. [Google Scholar]
- Subvol, B. II-VI and I-VII Compounds; Semimagnetic Compounds; Madelung, O., Rössler, U., Schulz, M., Eds.; Springer: Berlin/Heidelberg, Germany, 1999; p. 41. [Google Scholar]
- International Organization for Standardization. ISO 12107:2012; Metallic Materials—Fatigue Testing—Statistical Planning and analysis of Data. International Organization for Standardization: Geneva, Switzerland, 2012.
- Nie, J.F. Precipitation and Hardening in Magnesium Alloys. Metall. Mater. Trans. A 2012, 43, 3891–3939. [Google Scholar] [CrossRef]
- Wu, D.; Chen, R.S.; Ke, W. Microstructure and mechanical properties of a sand-cast Mg–Nd–Zn alloy. Mater. Des. 2014, 58, 324–331. [Google Scholar] [CrossRef]
- ASM International. ASM Handbook, Metallography and Microstructures, 1st ed.; George, F., Ed.; Vander Voort ASM International, The Materials Information Society: Materials Park, OH, USA, 2004; Volume 9. [Google Scholar]
- Arrabal, R.; Matykina, E.; Hashimoto, T.; Skeldon, P.; Thompson, G.E. Characterization of AC PEO coatings on magnesium alloys. Surf. Coat. Technol. 2009, 203, 2207–2220. [Google Scholar] [CrossRef]
- Khan, S.A.; Miyashita, Y.; Mutoh, Y.; Koike, T. Effect of anodized layer thickness on fatigue behavior of magnesium alloy. Mater. Sci. Eng. A 2008, 474, 261–269. [Google Scholar] [CrossRef]
- Monfort, F.; Matykina, E.; Berkani, A.; Skeldon, P.; Thompson, G.E.; Habazaki, H.; Shimizu, K. Species separation during coating growth on aluminium by spark anodizing. Surf. Coat. Technol. 2007, 201, 8671–8676. [Google Scholar] [CrossRef]
- Matykina, E.; Arrabal, R.; Scurr, D.J.; Baron, A.; Skeldon, P.; Thompson, G.E. Investigation of the mechanism of plasma electrolytic oxidation of aluminium using 18O tracer. Corros. Sci. 2010, 52, 1070–1076. [Google Scholar] [CrossRef]
- Durdu, S.; Bayramoğlu, S.; Demirtaş, A.; Usta, M.; Üçışık, A.H. Characterization of AZ31 Mg Alloy coated by plasma electrolytic oxidation. Vacuum 2013, 88, 130–133. [Google Scholar] [CrossRef]
- International Organization for Standardization. ISO 20502:2005; Fine Ceramics (Advanced Ceramics, Advanced Technical Ceramics)—Determination of Adhesion of Ceramic Coatings by Scratch Testing. International Organization for Standardization: Geneva, Switzerland, 2005.
- Bull, S.J.; Berasetegui, E.G. An overview of the potential of quantitative coating adhesion measurement by scratch testing. Tribol. Int. 2006, 39, 99–114. [Google Scholar] [CrossRef]
- Srinivasan, P.B.; Liang, J.; Blawert, C.; Dietzel, W. Dry sliding wear behaviour of magnesium oxide and zirconium oxide plasma electrolytic oxidation coated magnesium alloy. Appl. Surf. Sci. 2010, 256, 3265–3273. [Google Scholar] [CrossRef]
- Rapheal, G.; Kumar, S.; Blawert, C.; Dahotre, N.B. Wear behavior of plasma electrolytic oxidation (PEO) and hybrid coatings of PEO and laser on MRI 230D magnesium alloy. Wear 2011, 271, 1987–1997. [Google Scholar] [CrossRef]
- Jiang, B.L.; Wang, Y.M. 5—Plasma electrolytic oxidation treatment of aluminium and titanium alloys. In Surface Engineering of Light Alloys, 1st ed.; Dong, H., Ed.; Woodhead Publishing: Cambridge, UK, 2010; pp. 110–154. [Google Scholar]
- Li, Z.; Wang, Q.; Luo, A.A.; Peng, L.; Zhang, P. Fatigue behavior and life prediction of cast magnesium alloys. Mater. Sci. Eng. A 2015, 647, 113–126. [Google Scholar] [CrossRef]
- Mirza, F.A.; Chen, D.L.; Li, D.J.; Zeng, X.Q. Cyclic Deformation Behavior of a Rare-Earth Containing Extruded Magnesium Alloy: Effect of Heat Treatment. Metall. Mater. Trans. A 2015, 46, 1168–1187. [Google Scholar] [CrossRef]
- Li, Z.; Wang, Q.; Luo, A.A.; Fu, P.; Peng, L.; Wang, Y.; Wu, G. High cycle fatigue of cast Mg-3Nd-0.2Zn magnesium alloys. Metall. Mater. Trans. A 2013, 44, 5202–5215. [Google Scholar] [CrossRef]
- Morri, A.; Ceschini, L.; Martini, C.; Bernardi, A. Influence of Plasma Electrolytic Oxidation on Fatigue Behaviour of ZK60A-T5 Magnesium Alloy. Coatings 2020, 10, 1180. [Google Scholar] [CrossRef]
- Lonyuk, B.; Apachitei, I.; Duszczyk, J. The effect of oxide coatings on fatigue properties of 7475-T6 aluminium alloy. Surf. Coat. Technol. 2007, 201, 8688–8694. [Google Scholar] [CrossRef]
Nd | Gd | Zr | Zn | Fe | Ni | Cu | Si | Ag | ORE 1 | Mg |
---|---|---|---|---|---|---|---|---|---|---|
2.8 | 1.3 | 0.56 | 0.29 | 0.003 | <0.001 | <0.008 | <0.01 | <0.1 | <0.14 | Bal. |
Anodizing Parameters | ECO | PEO-Tribo [28] | PEO-Fatigue [29] |
---|---|---|---|
Coating mode control | Pulsed bipolar current (PBC): Potentiostatic for anodic pulse; galvanostatic for cathodic pulses | Galvanostatic (DC mode) | MAGOXID® (proprietary process) |
Voltage (V) | +500 V/−100 V | <200 V | |
Current density (mA cm−2) | 600 | 500 | |
Electrolyte | Alkaline phosphate-aluminate solution (KOH, Na4O7P2, NaAlO2 in deionized water) | Alkaline phosphate-silicate solution (Na5P3O10, Na2SiO3, NaOH in deionized water) | |
Tank temperature (°C) | 20–25 | 20–25 | |
Discharge mode | Low-discharge oxidation | Micro-discharge oxidation | Micro-discharge oxidation |
Main Coating Features, Tribological and Fatigue Properties | Dry Sliding | Rotating Bending | ||||||
---|---|---|---|---|---|---|---|---|
ECO-Tribo | PEO-Tribo [28] | ECO-Fatigue | PEO-Fatigue [29] | |||||
Surface roughness, µm | Ra | Rq | Ra | Rq | Ra | Rq | Ra | Rq |
0.19 ± 0.04 | 0.24 ± 0.04 | 5.3 ± 0.8 | 6.9 ± 2.0 | 0.30 ± 0.02 | 0.38 ± 0.02 | 2.0 ± 0.1 | 2.4 ± 0.3 | |
Thickness, µm | 55 ± 6 | 47 ± 10 | 16 ± 4 | 23 ± 3 | ||||
Phase constitution | MgO | MgO, Mg3(PO4)2, Mg2SiO4 | MgO | MgO, Mg3(PO4)2, Mg2P2O7 | ||||
Lc3 (scratch test), N | >30 | 21.7 ± 2.6 | 21.1 ± 2.0 | 13.3 ± 0.6 | ||||
Maximum load before coating failure (dry sliding), N | 50 | 5 | n.a. | n.a. | ||||
Mean fatigue strength (σD[50%]), MPa | n.a. | n.a. | 109 ± 5 (no decrease in comparison to untreated alloy) | 88 ± 13 (−15% in comparison to untreated alloy) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Egidio, G.; Tonelli, L.; Morri, A.; Boromei, I.; Shashkov, P.; Martini, C. Influence of Anodizing by Electro-Chemical Oxidation on Fatigue and Wear Resistance of the EV31A-T6 Cast Magnesium Alloy. Coatings 2023, 13, 62. https://doi.org/10.3390/coatings13010062
Di Egidio G, Tonelli L, Morri A, Boromei I, Shashkov P, Martini C. Influence of Anodizing by Electro-Chemical Oxidation on Fatigue and Wear Resistance of the EV31A-T6 Cast Magnesium Alloy. Coatings. 2023; 13(1):62. https://doi.org/10.3390/coatings13010062
Chicago/Turabian StyleDi Egidio, Gianluca, Lavinia Tonelli, Alessandro Morri, Iuri Boromei, Pavel Shashkov, and Carla Martini. 2023. "Influence of Anodizing by Electro-Chemical Oxidation on Fatigue and Wear Resistance of the EV31A-T6 Cast Magnesium Alloy" Coatings 13, no. 1: 62. https://doi.org/10.3390/coatings13010062
APA StyleDi Egidio, G., Tonelli, L., Morri, A., Boromei, I., Shashkov, P., & Martini, C. (2023). Influence of Anodizing by Electro-Chemical Oxidation on Fatigue and Wear Resistance of the EV31A-T6 Cast Magnesium Alloy. Coatings, 13(1), 62. https://doi.org/10.3390/coatings13010062