The Improved Non-Polar Gas Sensing Performance of Surface-Modified Porous Silicon-Based Gas Sensors
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dong, C.; Zhao, R.; Yao, L.; Ran, Y.; Zhang, X.; Wang, Y. A review on WO3 based gas sensors: Morphology control and enhanced sensing properties. J. Alloys Compd. 2020, 820, 153194. [Google Scholar] [CrossRef]
- David, S.S.; Veeralakshmi, S.; Sandhya, J.; Nehru, S.; Kalaiselvam, S. Room temperature operatable high sensitive toluene gas sensor using chemiresistive Ag/Bi2O3 nanocomposite. Sens. Actuators B Chem. 2020, 320, 128410. [Google Scholar] [CrossRef]
- Mokoena, T.P.; Swart, H.C.; Hillie, K.T.; Motaung, D.E. Engineering of rare-earth Eu3+ ions doping on p-type NiO for selective detection of toluene gas sensing and luminescence properties. Sens. Actuators B Chem. 2021, 347, 130530. [Google Scholar] [CrossRef]
- Basu, A.K.; Sah, A.N.; Dubey, M.M.; Dwivedi, P.K.; Pradhan, A.; Bhattacharya, S. MWCNT and α-Fe2O3 embedded rGO-nanosheets based hybrid structure for room temperature chloroform detection using fast response/recovery cantilever based sensors. Sens. Actuators B Chem. 2020, 305, 127457. [Google Scholar] [CrossRef]
- Karuppasamy, K.; Sharma, B.; Vikraman, D.; Jo, E.B.; Sivakumar, P.; Kim, H.S. Switchable pn gas response for 3D-hierarchical NiFe2O4 porous microspheres for highly selective and sensitive toluene gas sensors. J. Alloys Compd. 2021, 886, 161281. [Google Scholar] [CrossRef]
- Li, C.; Choi, P.G.; Kim, K.; Masuda, Y. High Performance Acetone Gas Sensor Based on Ultrathin Porous NiO Nanosheet. Sens. Actuators B Chem. 2022, 367, 132143. [Google Scholar] [CrossRef]
- Cheng, P.; Dang, F.; Wang, Y.; Gao, J.; Xu, L.; Wang, C.; Lv, L.; Li, X.; Zhang, B.; Liu, B. Gas sensor towards n-butanol at low temperature detection: Hierarchical flower-like Ni-doped Co3O4 based on solvent-dependent synthesis. Sens. Actuators B Chem. 2021, 328, 129028. [Google Scholar] [CrossRef]
- Wang, N.; Tao, W.; Gong, X.; Zhao, L.; Wang, T.; Zhao, L.; Liu, F.; Liu, X.; Sun, P.; Lu, G. Highly sensitive and selective NO2 gas sensor fabricated from Cu2O-CuO microflowers. Sens. Actuators B Chem. 2022, 362, 131803. [Google Scholar] [CrossRef]
- Khot, S.; Phalake, S.; Mahadik, S.; Baragale, M.; Jagadale, S.; Burungale, V.; Navale, Y.; Patil, V.; Patil, V.; Patil, P.; et al. Synthesis of CuO thin film sensors by spray pyrolysis method for NO2 gas detection. Mater. Today Proc. 2021, 43, 2694–2697. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, S.; Xiao, D.; Wang, S.; Zhang, T.; Yang, X.; Heng, S.; Sun, M. CuO/WO3 hollow microsphere PN heterojunction sensor for continuous cycle detection of H2S gas. Sens. Actuators B Chem. 2023, 374, 132823. [Google Scholar] [CrossRef]
- Bhowmick, T.; Ghosh, A.; Nag, S.; Majumder, S.B. Sensitive and selective CO2 gas sensor based on CuO/ZnO bilayer thin-film architecture. J. Alloys Compd. 2022, 903, 163871. [Google Scholar] [CrossRef]
- Steinhauer, S.; Singh, V.; Cassidy, C.; Gspan, C.; Grogger, W.; Sowwan, M.; Köck, A. Single CuO nanowires decorated with size-selected Pd nanoparticles for CO sensing in humid atmosphere. Nanotechnology 2015, 26, 175502. [Google Scholar] [CrossRef] [PubMed]
- Khaniyev, B.A.; Sagidolda, Y.; Dikhanbayev, K.K.; Tileu, A.O.; Ibraimov, M.K. High sensitive NH3 sensor based on electrochemically etched porous silicon. Cogent Eng. 2020, 7, 1810880. [Google Scholar] [CrossRef]
- Ibraimov, M.K.; Sagidolda, Y.; Rumyantsev, S.L.; Zhanabaev, Z.Z.; Shur, M.S. Selective gas sensor using porous silicon. Sens. Lett. 2016, 14, 588–591. [Google Scholar] [CrossRef]
- Kwon, Y.J.; Mirzaei, A.; Na, H.G.; Kang, S.Y.; Choi, M.S.; Bang, J.H.; Oum, W.; Kim, S.S.; Kim, H.W. Porous Si nanowires for highly selective room-temperature NO2 gas sensing. Nanotechnology 2018, 29, 294001. [Google Scholar] [CrossRef] [PubMed]
- Manakov, S.M.; Ibraimov, M.K.; Sagidolda, Y.; Zhumatova, S.A.; Darmenkulova, M.B. Detection of acetonitrile and chloroform using structures on the base of porous silicon. Eurasian Chem.-Technol. J. 2019, 21, 89–93. [Google Scholar] [CrossRef]
- Wu, Y.; Hu, M.; Qin, Y.; Wei, X.; Ma, S.; Yan, D. Enhanced response characteristics of p-porous silicon (substrate)/p-TeO2 (nanowires) sensor for NO2 detection. Sens. Actuators B Chem. 2014, 195, 181–188. [Google Scholar] [CrossRef]
- Bang, J.H.; Choi, M.S.; Mirzaei, A.; Oum, W.; Han, S.; Kim, S.S.; Kim, H.W. Porous Si/SnO2 nanowires heterostructures for H2S gas sensing. Ceram. Int. 2020, 46, 604–611. [Google Scholar] [CrossRef]
- Yan, D.; Li, S.; Liu, S.; Tan, M.; Cao, M. Electrodeposited tungsten oxide films onto porous silicon for NO2 detection at room temperature. J. Alloys Compd. 2018, 735, 718–727. [Google Scholar] [CrossRef]
- Yan, D.; Li, S.; Hu, M.; Liu, S.; Zhu, Y.; Cao, M. Electrochemical synthesis and the gas-sensing properties of the Cu2O nanofilms/porous silicon hybrid structure. Sens. Actuators B Chem. 2016, 223, 626–633. [Google Scholar] [CrossRef]
- Bang, J.H.; Choi, M.S.; Mirzaei, A.; Han, S.; Lee, H.Y.; Choi, S.W.; Kim, S.S.; Kim, H.W. Hybridization of silicon nanowires with TeO2 branch structures and Pt nanoparticles for highly sensitive and selective toluene sensing. Appl. Surf. Sci. 2020, 525, 146620. [Google Scholar] [CrossRef]
- Qiang, X.; Hu, M.; Zhou, L.; Liang, J. Pd nanoparticles incorporated porous silicon/V2O5 nanopillars and their enhanced p-type NO2-sensing properties at room temperature. Mater. Lett. 2018, 231, 194–197. [Google Scholar] [CrossRef]
- Harraz, F.A. Porous silicon chemical sensors and biosensors: A review. Sens. Actuators B Chem. 2014, 202, 897–912. [Google Scholar] [CrossRef]
- Harraz, F.A.; Ismail, A.A.; Al-Sayari, S.A.; Al-Hajry, A.; Al-Assiri, M.S. A highly sensitive and durable electrical sensor for liquid ethanol using thermally-oxidized mesoporous silicon. Superlattices Microstruct. 2016, 100, 1064–1072. [Google Scholar] [CrossRef]
- Salem, A.M.S.; Harraz, F.A.; El-Sheikh, S.M.; Hafez, H.S.; Ibrahim, I.A.; Abdel-Mottaleb, M.S.A. Enhanced electrical and luminescent performance of a porous silicon/MEH-PPV nanohybrid synthesized by anodization and repeated spin coating. RSC Adv. 2015, 5, 99892–99898. [Google Scholar] [CrossRef]
- Liu, X.; Hu, M.; Wang, Y.; Liu, J.; Qin, Y. High sensitivity NO2 sensor based on CuO/p-porous silicon heterojunction at room temperature. J. Alloys Compd. 2016, 685, 364–369. [Google Scholar] [CrossRef]
- Kadlečíková, M.; Breza, J.; Vančo, Ľ.; Mikolášek, M.; Hubeňák, M.; Racko, J.; Greguš, J. Raman spectroscopy of porous silicon substrates. Optik 2018, 174, 347–353. [Google Scholar] [CrossRef]
- Tran, T.H.; Nguyen, V.T. Copper oxide nanomaterials prepared by solution methods, some properties, and potential applications: A brief review. Int. Sch. Res. Not. 2014, 14, 856592. [Google Scholar] [CrossRef] [PubMed]
- Niu, J.Y.; Wang, L.; Xu, J.C.; Jin, H.X.; Hong, B.; Jin, D.F.; Peng, H.L.; Wang, X.Q. Mesoporous Co3O4 nanowires decorated with g-C3N4 nanosheets for high performance toluene gas sensors based on pn heterojunction. Mater. Chem. Phys. 2023, 293, 126980. [Google Scholar] [CrossRef]
- Liu, X.; Duan, X.; Zhang, C.; Hou, P.; Xu, X. Improvement toluene detection of gas sensors based on flower-like porous indium oxide nanosheets. J. Alloys Compd. 2022, 897, 163222. [Google Scholar] [CrossRef]
- Midya, A.; Mukherjee, S.; Roy, S.; Santra, S.; Manna, N.; Ray, S.K. Selective chloroform sensor using thiol functionalized reduced graphene oxide at room temperature, Mater. Res. Express 2018, 5, 025604. [Google Scholar] [CrossRef]
- Yan, D.; Xia, S.; Li, S.; Wang, S.; Tan, M.; Liu, S. Electrophoretic deposition of multiwalled carbon nanotubes onto porous silicon with enhanced NO2-sensing characteristics. Mater. Res. Bull. 2021, 134, 111109. [Google Scholar] [CrossRef]
- Mashock, M.; Yu, K.; Cui, S.; Mao, S.; Lu, G.; Chen, J. Modulating gas sensing properties of CuO nanowires through creation of discrete nanosized p–n junctions on their surfaces. ACS Appl. Mater. Interfaces 2012, 4, 4192–4199. [Google Scholar] [CrossRef] [PubMed]
- Jaiswal, J.; Singh, P.; Chandra, R. Low-temperature highly selective and sensitive NO2 gas sensors using CdTe-functionalized ZnO filled porous Si hybrid hierarchical nanostructured thin films. Sens. Actuators B Chem. 2021, 327, 128862. [Google Scholar] [CrossRef]
- Kim, H.J.; Lee, J.H. Highly sensitive and selective gas sensors using p-type oxide semiconductors: Overview. Sens. Actuators B Chem. 2014, 192, 607–627. [Google Scholar] [CrossRef]
- Qiang, X.; Hu, M.; Zhao, B.; Qin, Y.; Zhang, T.; Zhou, L.; Liang, J. Preparation of porous silicon/Pd-loaded WO3 nanowires for enhancement of ammonia sensing properties at room temperature. Mater. Sci. Semicond. Process. 2018, 79, 113–118. [Google Scholar] [CrossRef]
- Aleksanyan, M.; Sayunts, A.; Shahkhatuni, G.; Simonyan, Z.; Shahnazaryan, G.; Aroutiounian, V. Gas Sensor Based on ZnO Nanostructured Film for the Detection of Ethanol Vapor. Chemosensors 2022, 10, 245. [Google Scholar] [CrossRef]
- Perillo, P.M.; Rodriguez, D.F. A room temperature chloroform sensor using TiO2 nanotubes. Sens. Actuators B Chem. 2014, 193, 263–266. [Google Scholar] [CrossRef]
Sensing Material | Target Gas | Sensitivity | Working Temperature, °C | Concentration, ppm | Reference |
---|---|---|---|---|---|
(C3N4)0.12Co3O4 | Toluene | 17.02 | 220 | 100 | [29] |
Ag/Bi2O3 | Toluene | 89.2 | 26 | 50 | [2] |
Ag0.4Pd0.6@In2O3 | Toluene | 15.9 | 180 | 1 | [30] |
rGO-MWCNT (5 mg)- α-Fe2O3 | Chloroform | 16 | 26 | 1 | [4] |
RGO | Chloroform | 4.3 | 26 | 800 | [31] |
CuO/PS | Toluene Chloroform | 33.9 27.6 | 26 | 0.1 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khaniyev, B.; Ibraimov, M.; Sagidolda, Y.; Tezekbay, Y.; Duisebayev, T.; Tileu, A.; Khaniyeva, A. The Improved Non-Polar Gas Sensing Performance of Surface-Modified Porous Silicon-Based Gas Sensors. Coatings 2023, 13, 190. https://doi.org/10.3390/coatings13010190
Khaniyev B, Ibraimov M, Sagidolda Y, Tezekbay Y, Duisebayev T, Tileu A, Khaniyeva A. The Improved Non-Polar Gas Sensing Performance of Surface-Modified Porous Silicon-Based Gas Sensors. Coatings. 2023; 13(1):190. https://doi.org/10.3390/coatings13010190
Chicago/Turabian StyleKhaniyev, Bakyt, Margulan Ibraimov, Yerulan Sagidolda, Yerbolat Tezekbay, Tolagay Duisebayev, Ayan Tileu, and Ainur Khaniyeva. 2023. "The Improved Non-Polar Gas Sensing Performance of Surface-Modified Porous Silicon-Based Gas Sensors" Coatings 13, no. 1: 190. https://doi.org/10.3390/coatings13010190
APA StyleKhaniyev, B., Ibraimov, M., Sagidolda, Y., Tezekbay, Y., Duisebayev, T., Tileu, A., & Khaniyeva, A. (2023). The Improved Non-Polar Gas Sensing Performance of Surface-Modified Porous Silicon-Based Gas Sensors. Coatings, 13(1), 190. https://doi.org/10.3390/coatings13010190