Selection of New Heat Treatment Conditions for Novel Electroless Nickel-Boron Deposits and Characterization of Heat-Treated Coatings
Abstract
:1. Introduction
2. Materials and Methods
2.1. Substrate Preparation
2.2. Electroless Nickel-Boron Plating and Heat Treatment
2.3. Characterization
3. Results and Discussions
3.1. Determination of the Crystallization Onset Temperature
3.2. Structural Analysis
3.3. Effect of Heat Treatment Temperature and Time on Hardness
3.4. Surface and Cross-Section Morphology of the Coatings with Optimized Heat Treatment
3.5. Mechanical Properties
3.6. Roughness
3.7. Tribological Properties
3.7.1. Stress Analysis Prior to the Wear Test
3.7.2. Ball-on-Disk Sliding Wear Test
3.7.3. Ball-on-Flat Sliding Wear Test
3.8. Corrosion Properties
3.8.1. Potentiodynamic Polarization Tests
3.8.2. Salt Spray Test
4. Conclusions
- The DSC trace of the as-deposited samples exhibits only one exothermic peak at around 284 °C, which is attributed to the formation of Ni3B phases, and heat treatment above 250 °C led to the formation of the Ni3B crystalline phase;
- The maximum hardness was obtained for heat treatment of 4 h at 300 °C and was 40% higher than the hardness of the as-deposited coating. This was confirmed by 3 different hardness measurement methods, and the results are 1196 ± 120 hk50, 1277 ± 181 hv50, and 16.2 ± 3 GPa;
- The morphological features of the nickel-boron coatings (limited roughness and featureless morphology) are unchanged after the heat treatment;
- Similar wear mechanisms (abrasive, adhesive, and fatigue), typical for the contact between a soft coating and a hard ball, were observed after both pin-on-disk and ball-on-flat sliding wear tests on the heat-treated coatings;
- The COF of the heat-treated coating during pin-on-disk sliding increases; however, it is the same during the ball-on-flat test in comparison with the one of the as-deposited coating. This difference results from the different proportions between adhesive and abrasive wear obtained after the tests;
- The wear track evaluation by SEM indicated that the coating maintained its integrity after both pin-on-disk and ball-on-flat sliding tests;
- The heat-treated coating exhibits a lower corrosion resistance after heat treatment, which is noticed from both potentiodynamic and salt spray tests.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shakoor, R.A.; Kahraman, R.; Gao, W.; Wang, Y. Synthesis, Characterization and Applications of Electroless Ni-B Coatings—A Review. Int. J. Electrochem. Sci. 2016, 11, 2486–2512. [Google Scholar]
- Anik, M.; Körpe, E.; Şen, E. Effect of Coating Bath Composition on the Properties of Electroless Nickel-Boron Films. Surf. Coat. Technol. 2008, 202, 1718–1727. [Google Scholar] [CrossRef]
- Oriňáková, R.; Oriňák, A.; Kupková, M.; Sabalová, M.; Fedorková, A.S.; Kabátová, M.; Kal’avskỳ, F.; Sedlaříková, M. Effect of Heat Treatment on the Corrosion and Mechanical Properties of Electrolytical Composite Ni-B Coatings. Int. J. Electrochem. Sci. 2014, 9, 4268–4286. [Google Scholar]
- Sudagar, J.; Lian, J.; Sha, W. Electroless Nickel, Alloy, Composite and Nano Coatings—A Critical Review. J. Alloys Compd. 2013, 571, 183–204. [Google Scholar] [CrossRef] [Green Version]
- Madah, F.; Dehghanian, C.; Amadeh, A.A. Investigations on the Wear Mechanisms of Electroless Ni-B Coating during Dry Sliding and Endurance Life of the Worn Surfaces. Surf. Coat. Technol. 2015, 282, 6–15. [Google Scholar] [CrossRef]
- García-Aguirre, C.A.; Domínguez-Ríos, C.; Torres-Sánchez, R.; Román-Aguirre, M.; Holguín-Momaca, J.T.; Aguilar-Elguézabal, A. Microstructure and Transmission Electron Microscopy Characterization of Electroless Ni-B Thin Films Deposited on MWCNTs. Surf. Coat. Technol. 2015, 282, 107–114. [Google Scholar] [CrossRef]
- Vitry, V.; Hastir, J.; Mégret, A.; Yazdani, S.; Yunacti, M.; Bonin, L. Recent Advances in Electroless Nickel-boron Coatings. Surf. Coat. Technol. 2022, 429, 127937. [Google Scholar] [CrossRef]
- Schlesinger, M. Electroless Deposition of Nickel. In Modern Electroplating, 5th ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2011; Volume 4, pp. 447–458. [Google Scholar] [CrossRef]
- Barati, Q.; Hadavi, S.M.M. Electroless Ni-B and Composite Coatings: A Critical Review on Formation Mechanism, Properties, Applications and Future Trends. Surf. Interfaces 2020, 21, 100702. [Google Scholar] [CrossRef]
- Narayanan, T.S.N.S.; Krishnaveni, K.; Seshadri, S.K. Electroless Ni-P/Ni-B Duplex Coatings: Preparation and Evaluation of Microhardness, Wear and Corrosion Resistance. Mater. Chem. Phys. 2003, 82, 771–779. [Google Scholar] [CrossRef]
- Krishnaveni, K.; Sankara Narayanan, T.S.N.; Seshadri, S.K. Electroless Ni-B Coatings: Preparation and Evaluation of Hardness and Wear Resistance. Surf. Coat. Technol. 2005, 190, 115–121. [Google Scholar] [CrossRef]
- Kanta, A.F.; Vitry, V.; Delaunois, F. Wear and Corrosion Resistance Behaviours of Autocatalytic Electroless Plating. J. Alloys Compd. 2009, 486, 21–23. [Google Scholar] [CrossRef]
- Mukhopadhyay, A.; Barman, T.K.; Sahoo, P. Effect of Heat Treatment on the Characteristics of Electroless Ni-B, Ni-B-W and Ni-B-Mo Coatings. Mater. Today Proc. 2018, 5, 3306–3315. [Google Scholar] [CrossRef]
- Georgiza, E.; Gouda, V.; Vassiliou, P. Production and Properties of Composite Electroless Ni-B-SiC Coatings. Surf. Coat. Technol. 2017, 325, 46–51. [Google Scholar] [CrossRef]
- Delaunois, F.; Lienard, P. Heat Treatments for Electroless Nickel-Boron Plating on Aluminium Alloys. Surf. Coat. Technol. 2002, 160, 239–248. [Google Scholar] [CrossRef]
- Vitry, V.; Bonin, L. Increase of Boron Content in Electroless Nickel-Boron Coating by Modification of Plating Conditions. Surf. Coat. Technol. 2017, 311, 164–171. [Google Scholar] [CrossRef]
- Gilley, K.L.; Nino, J.C.; Riddle, Y.W.; Hahn, D.W.; Perry, S.S. Heat Treatments Modify the Tribological Properties of Nickel Boron Coatings. ACS Appl. Mater. Interfaces 2012, 4, 3069–3076. [Google Scholar] [CrossRef]
- Wan, Y.; Yu, Y.; Cao, L.; Zhang, M.; Gao, J.; Qi, C. Corrosion and Tribological Performance of PTFE-Coated Electroless Nickel Boron Coatings. Surf. Coat. Technol. 2016, 307, 316–323. [Google Scholar] [CrossRef]
- Tima, R.; Mahboubi, F. Effect of Plasma Nitriding Temperature on Microstructure and Wear Properties of Electroless Nickel-Boron Coatings. Surf. Coat. Technol. 2021, 415, 127084. [Google Scholar] [CrossRef]
- Zhang, J.; Xie, Z.H.; Chen, H.; Hu, C.; Li, L.; Hu, B.; Song, Z.; Yan, D.; Yu, G. Electroless Deposition and Characterization of a Double-Layered Ni-B/Ni-P Coating on AZ91D Mg Alloy from Eco-Friendly Fluoride-Free Baths. Surf. Coat. Technol. 2018, 342, 178–189. [Google Scholar] [CrossRef]
- Niksefat, V.; Ghorbani, M. Mechanical and Electrochemical Properties of Ultrasonic-Assisted Electroless Deposition of Ni-B-TiO2 Composite Coatings. J. Alloys Compd. 2015, 633, 127–136. [Google Scholar] [CrossRef]
- Domínguez-Ríos, C.; Hurtado-Macias, A.; Torres-Sánchez, R.; Ramos, M.A.; González-Hernández, J. Measurement of Mechanical Properties of an Electroless Ni-B Coating Using Nanoindentation. Ind. Eng. Chem. Res. 2012, 51, 7762–7768. [Google Scholar] [CrossRef]
- Qian, W.; Wei, H.; Chen, H.; Zhu, L.; Sun, Y.; Han, S.; Lin, H.; Jiang, J. The Effect of Heat Treatment on Ni–B–Ce Electroless Coatings. Surf. Eng. 2019, 35, 145–153. [Google Scholar] [CrossRef]
- Bülbül, F.; Altun, H.; Küçük, Ö.; Ezirmik, V. Tribological and Corrosion Behaviour of Electroless Ni-B Coating Possessing a Blackberry like Structure. Met. Mater. Int. 2012, 18, 631–637. [Google Scholar] [CrossRef]
- Bonin, L.; Vitry, V.; Delaunois, F. Corrosion Behaviour of Electroless High Boron-Mid Phosphorous Nickel Duplex Coatings in the as-Plated and Heat-Treated States in NaCl, H2SO4, NaOH and Na2SO4 Media. Mater. Chem. Phys. 2018, 208, 77–84. [Google Scholar] [CrossRef]
- Keong, K.G.; Sha, W.; Malinov, S. Hardness Evolution of Electroless Nickel-Phosphorus Deposits with Thermal Processing. Surf. Coat. Technol. 2003, 168, 263–274. [Google Scholar] [CrossRef]
- Biswas, A.; Das, S.K.; Sahoo, P. Correlating Tribological Performance with Phase Transformation Behavior for Electroless Ni-(High)P Coating. Surf. Coat. Technol. 2017, 328, 102–114. [Google Scholar] [CrossRef]
- Vitry, V.; Delaunois, F.; Dumortier, C. Mechanical Properties and Scratch Test Resistance of Nickel-Boron Coated Aluminium Alloy after Heat Treatments. Surf. Coat. Technol. 2008, 202, 3316–3324. [Google Scholar] [CrossRef]
- Vitry, V.; Delaunois, F.; Dumortier, C. How Heat Treatment Can Give Better Properties to Electroless Nickel-Boron Coatings. Metall. Ital. 2009, 101, 1–6. [Google Scholar]
- Vitry, V. Electroless Nickel-Boron Deposits: Synthesis, Formation and Characterization; Effect of Heat Treatments; Analytical Modeling of the Structural State. Ph.D. Thesis, University of Mons, Mons, Belgium, 2009. [Google Scholar]
- Ghavidel, N.; Allahkaram, S.R.; Naderi, R.; Barzegar, M.; Bakhshandeh, H. Corrosion and Wear Behavior of an Electroless Ni-P/Nano-SiC Coating on AZ31 Mg Alloy Obtained through Environmentally-Friendly Conversion Coating. Surf. Coat. Technol. 2020, 382, 125156. [Google Scholar] [CrossRef]
- Pal, S.; Verma, N.; Jayaram, V.; Biswas, S.K.; Riddle, Y. Characterization of Phase Transformation Behaviour and Microstructural Development of Electroless Ni-B Coating. Mater. Sci. Eng. A 2011, 528, 8269–8276. [Google Scholar] [CrossRef]
- Bonin, L.; Vitry, V.; Delaunois, F. Replacement of Lead Stabilizer in Electroless Nickel-Boron Baths: Synthesis and Characterization of Coatings from Bismuth Stabilized Bath. Sustain. Mater. Technol. 2020, 23, e00130. [Google Scholar] [CrossRef]
- Bonin, L.; Vitry, V.; Delaunois, F. The Tin Stabilization Effect on the Microstructure, Corrosion and Wear Resistance of Electroless NiB Coatings. Surf. Coat. Technol. 2019, 357, 353–363. [Google Scholar] [CrossRef]
- Yunacti, M.; Mégret, A.; Staia, M.H.; Montagne, A.; Vitry, V. Characterization of Electroless Nickel–Boron Deposit from Optimized Stabilizer-Free Bath. Coatings 2021, 11, 576. [Google Scholar] [CrossRef]
- Bonin, L.; Castro, C.C.; Vitry, V.; Hantson, A.L.; Delaunois, F. Optimization of Electroless NiB Deposition without Stabilizer, Based on Surface Roughness and Plating Rate. J. Alloys Compd. 2018, 767, 276–284. [Google Scholar] [CrossRef]
- Oliver, W.C.; Pharr, G.M. An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments. J. Mater. Res. 1992, 7, 1564–1583. [Google Scholar] [CrossRef]
- Sankara Narayanan, T.S.N.; Seshadri, S.K. Formation and Characterization of Borohydride Reduced Electroless Nickel Deposits. J. Alloys Compd. 2004, 365, 197–205. [Google Scholar] [CrossRef]
- Matik, U. The Influence of Heat-Treatment on Hardness and Structural Characteristics of Electroless Ni-B Deposited Ferrous Powder Metal Compacts. Gazi Üniv. Fen Bilim. Derg. Part C Tasar. Teknol. 2017, 5, 223–230. [Google Scholar]
- Balaraju, J.N.; Priyadarshi, A.; Kumar, V.; Manikandanath, N.T.; Kumar, P.P.; Ravisankar, B. Hardness and Wear Behaviour of Electroless Ni–B Coatings. Mater. Sci. Technol. 2016, 32, 1654–1665. [Google Scholar] [CrossRef]
- Serin, I.G.; Göksenli, A. Effect of Annealing Temperature on Hardness and Wear Resistance of Electroless Ni-B-Mo Coatings. Surf. Rev. Lett. 2015, 22, 1550058. [Google Scholar] [CrossRef]
- Vitry, V.; Kanta, A.F.; Dille, J.; Delaunois, F. Structural State of Electroless Nickel-Boron Deposits (5wt. % B): Characterization by XRD and TEM. Surf. Coat. Technol. 2012, 206, 3444–3449. [Google Scholar] [CrossRef]
- Okamoto, H.; Schlesinger, M.; Mueller, E. (Eds.) B (Boron) Binary Alloy Phase Diagrams. In Alloy Phase Diagrams; ASM International: Almere, The Netherlands, 2018; Volume 13, pp. 174–184. [Google Scholar] [CrossRef]
- Delaunois, F.; Vitry, V.; Bonin, L. Electroless Nickel Plating, Fundamentals to Applications; Taylor & Francis Group: Croydon, UK, 2019; ISBN 13:978-1-138-60580-0. [Google Scholar]
- Oraon, B.; Majumdar, G.; Ghosh, B. Improving Hardness of Electroless Ni-B Coatings Using Optimized Deposition Conditions and Annealing. Mater. Des. 2008, 29, 1412–1418. [Google Scholar] [CrossRef]
- Vitry, V.; Delaunois, F. Nanostructured Electroless Nickel-Boron Coatings for Wear Resistance; Elsevier Ltd.: Amsterdam, The Netherlands, 2014; ISBN 9780857092175. [Google Scholar]
- Montagne, A.; Vitry, V.; Bonin, L.; Mughal, M.Z.; Sebastiani, M.; Iost, A.; Staia, H. Contraintes Résiduelles et Comportement Mécanique de Revêtements Nickel-Bore. Matér. Tech. 2019, 107, 205. [Google Scholar] [CrossRef]
- Finch, C.B.; Cavin, O.B.; Becher, P.F. Crystal Growth and Properties of Trinickel Boride, Ni3B. J. Cryst. Growth 1984, 67, 556–558. [Google Scholar] [CrossRef]
- Arias, S.; Castaño, J.G.; Correa, E.; Echeverría, F.; Gómez, M. Effect of Heat Treatment on Tribological Properties of Ni-B Coatings on Low Carbon Steel: Wear Maps and Wear Mechanisms. J. Tribol. 2019, 141, 091601. [Google Scholar] [CrossRef]
- Balaraju, J.N.; Selvi, V.E.; Grips, V.K.W.; Rajam, K.S. Electrochemical Studies on Electroless Ternary and Quaternary Ni-P Based Alloys. Electrochim. Acta 2006, 52, 1064–1074. [Google Scholar] [CrossRef]
- Das, S.K.; Sahoo, P. Electrochemical Impedance Spectroscopy of Ni-B Coatings and Optimization by Taguchi Method and Grey Relational Analysis. Port. Electrochim. Acta 2011, 29, 211–231. [Google Scholar] [CrossRef]
- Anık, M.; Körpe, E.; Baksan, B. Isıl Işlemin Akımsız Ni.B Kaplamanın Mikro-Yapısına, Korozyon Direncine ve Sertliğine Etkisi. Eskişeh. Osmangazi Üniv. Mühendis. Mimar. Fak. Derg. 2009, 22, 111–124. [Google Scholar]
- Vitry, V.; Sens, A.; Kanta, A.F.; Delaunois, F. Wear and Corrosion Resistance of Heat Treated and As-Plated Duplex NiP/NiB Coatings on 2024 Aluminum Alloys. Surf. Coat. Technol. 2012, 206, 3421–3427. [Google Scholar] [CrossRef]
Compound | Amount [35] |
---|---|
NiCl2·6H2O (99%—VWR Chemicals) (g/L) | 24 |
NaBH4 (99.9%—Acros Organics) (g/L) | 0.4 |
NH2-CH2-CH2-NH2 (99% VWR Chemicals) (mL/L) | 120 |
NaOH (VWR Chemicals) (g/L) | 160 |
Temperature (°C) | Time (h) | |||
---|---|---|---|---|
0.5 | 1 | 2 | 4 | |
250 | - | ✓ | - | - |
300 | - | ✓ | ✓ | ✓ |
350 | - | ✓ | ✓ | ✓ |
400 | - | ✓ | ✓ | - |
450 | ✓ | ✓ | - | - |
Test | Ball-on-Disk | Ball-on-Flat | |
---|---|---|---|
Parameters | |||
Load (N) | 2 | 2 | |
Sliding speed/frequence | 10 cm/s | 5 Hz | |
Sliding distance (m) | 1000 | 1000 | |
Counter body | Al2O3 | Al2O3 | |
Counterbody diameter (mm) | 6 | 4.8 | |
Wear track (mm) | 3 (radius) | 10 (length) | |
Environment | Ambient | Ambient |
Hardness | Heat-Treated Sample | As-Deposited Sample [30] |
---|---|---|
Knoop hardness (hk50) | 1196 ± 120 | 886 ± 30 |
Vickers hardness (hv50) | 1277 ± 181 | 933 ± 62 |
IIT Hardness (GPa) | 16.2 ± 3.0 | 11.6 ± 0.3 |
Young’s modulus (GPa) | 277 ± 26 | 201 ± 10 |
Properties | E (GPa) | Thickness (µm) | Poisson’s Ratio (ν) | Yield Stress σ (MPa) | |
---|---|---|---|---|---|
Material | |||||
Heat-treated deposit | 277 | 15 | 0.31 | 5400 | |
Steel | 210 | 0.33 | 400 | ||
Al2O3 | 360 | 0.2 |
Element | Oxygen (wt. %) | Aluminum (wt. %) | Iron (wt. %) | Nickel (wt. %) |
---|---|---|---|---|
Wear track on deposit | 5 | 0.4 | 0.6 | 93.8 |
Debris | 5.4 | 0.5 | 0 | 93.6 |
Wear track on the ball | 61.1 | 13.5 | 0 | 24.9 |
Element | Oxygen (wt. %) | Aluminum (wt. %) | Iron (wt. %) | Nickel (wt. %) |
---|---|---|---|---|
Wear track on deposit | 4.9 | 0.5 | 0.6 | 92.2 |
Debris | 33.8 | 4.5 | 0.1 | 61.06 |
Ball | 51.1 | 21.8 | 0 | 24.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vitry, V.; Yunacti, M.; Mégret, A.; Khalid, H.A.; Staia, M.H.; Montagne, A. Selection of New Heat Treatment Conditions for Novel Electroless Nickel-Boron Deposits and Characterization of Heat-Treated Coatings. Coatings 2023, 13, 1. https://doi.org/10.3390/coatings13010001
Vitry V, Yunacti M, Mégret A, Khalid HA, Staia MH, Montagne A. Selection of New Heat Treatment Conditions for Novel Electroless Nickel-Boron Deposits and Characterization of Heat-Treated Coatings. Coatings. 2023; 13(1):1. https://doi.org/10.3390/coatings13010001
Chicago/Turabian StyleVitry, Véronique, Muslum Yunacti, Alexandre Mégret, Hafiza Ayesha Khalid, Mariana Henriette Staia, and Alex Montagne. 2023. "Selection of New Heat Treatment Conditions for Novel Electroless Nickel-Boron Deposits and Characterization of Heat-Treated Coatings" Coatings 13, no. 1: 1. https://doi.org/10.3390/coatings13010001
APA StyleVitry, V., Yunacti, M., Mégret, A., Khalid, H. A., Staia, M. H., & Montagne, A. (2023). Selection of New Heat Treatment Conditions for Novel Electroless Nickel-Boron Deposits and Characterization of Heat-Treated Coatings. Coatings, 13(1), 1. https://doi.org/10.3390/coatings13010001