Controlling Morphology and Wettability of Intrinsically Superhydrophobic Copper-Based Surfaces by Electrodeposition
Abstract
:1. Introduction
2. Materials and Methods
2.1. Electrodeposition Conditions
2.2. Surface Characterization
3. Results
3.1. Square Pulse
3.2. Cyclic Voltammetry
3.3. Wetting Durability
3.3.1. Under UV Exposure
3.3.2. Abrasion Tests
3.4. A Comparison between the Sulphate and Fluoroborate Samples
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, J.; Huang, X.; Li, Y.; Li, Z.; Chi, Q.; Li, G. Formation of Hierarchical CuO Microcabbages as Stable Bionic Superhydrophobic Materials via a Room-Temperature Solution-Immersion Process. Solid State Sci. 2008, 10, 1568–1576. [Google Scholar] [CrossRef]
- Zhang, P.; Lv, F.Y. A Review of the Recent Advances in Superhydrophobic Surfaces and the Emerging Energy-Related Applications. Energy 2015, 82, 1068–1087. [Google Scholar] [CrossRef]
- Guittard, F.; Darmanin, T. Bioinspired Superhydrophobic Surfaces: Advances and Applications with Metallic and Inorganic Materials; Pan Stanford Publishing Pte Ltd, Ed.; Jenny Stanford Publishing: Stanford, CA, USA, 2017; ISBN 9781351859592. [Google Scholar]
- Yifan Si, Z.G. Superhydrophobic Nanocoatings: From Materials to Fabrications and to Applications. Nanoscale 2015, 7, 5922–5946. [Google Scholar] [CrossRef]
- Darmanin, T.; Guittard, F. Recent Advances in the Potential Applications of Bioinspired Superhydrophobic Materials. J. Mater. Chem. A 2014, 2, 16319–16359. [Google Scholar] [CrossRef]
- Cassie, A.B.D.; Baxter, S. Wettability of Porous Surfaces. Trans. Faraday Soc. 1944, 40, 546–551. [Google Scholar] [CrossRef]
- Khaskhoussi, A.; Risitano, G.; Calabrese, L.; D’andrea, D. Investigation of the Wettability Properties of Different Textured Lead/Lead-Free Bronze Coatings. Lubricants 2022, 10, 82. [Google Scholar] [CrossRef]
- Volpe, A.; Covella, S.; Gaudiuso, C.; Ancona, A. Improving the Laser Texture Strategy to Get Superhydrophobic Aluminum Alloy Surfaces. Coatings 2021, 11, 369. [Google Scholar] [CrossRef]
- Marmur, A. Hydro- Hygro- Oleo- Omni-Phobic? Terminology of Wettability Classification. Soft Matter 2012, 8, 6867–6870. [Google Scholar] [CrossRef]
- Wenzel, R.N. Resistance of Solid Surfaces to Wetting by Water. Ind. Eng. Chem. 1936, 28, 988–994. [Google Scholar] [CrossRef]
- Mumm, F.; Van Helvoort, A.T.J.; Sikorski, P. Easy Route to Superhydrophobic Copper-Based Wire-Guided Droplet Microfluidic Systems. ACS Nano 2009, 3, 2647–2652. [Google Scholar] [CrossRef] [Green Version]
- Shirtcliffe, N.J.; McHale, G.; Newton, M.I.; Perry, C.C. Wetting and Wetting Transitions on Copper-Based Super-Hydrophobic Surfaces. Langmuir 2005, 21, 937–943. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Xue, Y.; Xue, Y.; Lv, C.; Jin, Y. Long-Term Durability of Robust Super-Hydrophobic Co–Ni-Based Coatings Produced by Electrochemical Deposition. Coatings 2022, 12, 222. [Google Scholar] [CrossRef]
- Ramos Chagas, G.; Akbari, R.; Godeau, G.; Mohammadizadeh, M.; Guittard, F.; Darmanin, T. Electrodeposited Poly(Thieno[3,2-b]Thiophene) Films for the Templateless Formation of Porous Structures by Galvanostatic and Pulse Deposition. Chempluschem 2017, 82, 1351–1358. [Google Scholar] [CrossRef] [PubMed]
- Darmanin, T.; De Givenchy, E.T.; Amigoni, S.; Guittard, F. Superhydrophobic Surfaces by Electrochemical Processes. Adv. Mater. 2013, 25, 1378–1394. [Google Scholar] [CrossRef]
- Al-Bat’hi, S.A.M. Electrodeposition of Nanostructure Materials. In Electroplating of Nanostructures; Aliofkhazraei, M., Ed.; IntechOpen: London, UK, 2015; pp. 3–26. [Google Scholar]
- Nasirpouri, F. Electrodeposition of Nanostructured Materials; Car, R., Ertl, G., Freund, H.J., Lüth, H., Rocca, M.A., Eds.; Springer: Cham, Switzerland, 2017; ISBN 9783319449197. [Google Scholar]
- Gurrappa, I.; Binder, L. Electrodeposition of Nanostructured Coatings and Their Characterization—A Review. Sci. Technol. Adv. Mater. 2008, 9. [Google Scholar] [CrossRef]
- Barnes, S.C.; Storey, G.G.; Pick, H.J. The Structure of Electrodeposited Copper-III. The Effect of Current Density and Temperature on Growth Habit. Electrochim. Acta 1960, 2, 195–204. [Google Scholar] [CrossRef]
- Huang, M.C.; Wang, T.; Chang, W.S.; Lin, J.C.; Wu, C.C.; Chen, I.C.; Peng, K.C.; Lee, S.W. Temperature Dependence on P-Cu2O Thin Film Electrochemically Deposited onto Copper Substrate. Appl. Surf. Sci. 2014, 301, 369–377. [Google Scholar] [CrossRef]
- Mallik, A.; Ray, B.C. Implication of Low Temperature and Sonication on Electrocrystallization Mechanism of Cu Thin Films: A Kinetics and Structural Correlation. Mater. Res. 2013, 16, 539–545. [Google Scholar] [CrossRef]
- Mallik, A.; Ray, B.C. Evolution of Principle and Practice of Electrodeposited Thin Film: A Review on Effect of Temperature and Sonication. Int. J. Electrochem. 2011, 2011, 568023. [Google Scholar] [CrossRef]
- Akbari, R.; Mohammadizadeh, M.R.; Khajeh Aminian, M.; Abbasnejad, M. Hydrophobic Cu2O Surfaces Prepared by Chemical Bath Deposition Method. Appl. Phys. A Mater. Sci. Process. 2019, 125, 190. [Google Scholar] [CrossRef]
- Dini, J.W.; Snyder, D.D. Electrodeposition of Copper. In Modern Electroplating; Schlesinger, M.P., Ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2010; pp. 33–78. ISBN 9780470167786. [Google Scholar]
- Zhao, W.; Fu, W.; Yang, H.; Tian, C.; Li, M.; Li, Y.; Zhang, L.; Sui, Y.; Zhou, X.; Chen, H.; et al. Electrodeposition of Cu2O Films and Their Photoelectrochemical Properties. CrystEngComm 2011, 13, 2871–2877. [Google Scholar] [CrossRef]
- Ding, Y.; Li, Y.; Yang, L.; Li, Z.; Xin, W.; Liu, X.; Pan, L.; Zhao, J. The Fabrication of Controlled Coral-like Cu2O Films and Their Hydrophobic Property. Appl. Surf. Sci. 2013, 266, 395–399. [Google Scholar] [CrossRef]
- Akbari, R.; Ramos Chagas, G.; Godeau, G.; Mohammadizadeh, M.; Guittard, F.; Darmanin, T. Intrinsically Water-Repellent Copper Oxide Surfaces; An Electro-Crystallization Approach. Appl. Surf. Sci. 2018, 443, 191–197. [Google Scholar] [CrossRef]
- Akbari, R.; Godeau, G.; Mohammadizadeh, M.; Guittard, F.; Darmanin, T. Wetting Transition from Hydrophilic to Superhydrophobic over Dendrite Copper Leaves Grown on Steel Meshes. J. Bionic Eng. 2019, 16, 719–729. [Google Scholar] [CrossRef]
- Akbari, R.; Godeau, G.; Mohammadizadeh, M.; Guittard, F.; Darmanin, T. The Influence of Bath Temperature on the One-Step Electrodeposition of Non-Wetting Copper Oxide Coatings. Appl. Surf. Sci. 2020, 503, 144094. [Google Scholar] [CrossRef]
- Sau, T.K.; Rogach, A.L. Complex-Shaped Metal Nanoparticles; Sau, T.K., Rogach, A.L., Eds.; Wiley-VCH: Weinheim, Germany, 2012; ISBN 9783527325894. [Google Scholar]
- Ko, W.Y.; Chen, W.H.; Der Tzeng, S.; Gwo, S.; Lin, K.J. Synthesis of Pyramidal Copper Nanoparticles on Gold Substrate. Chem. Mater. 2006, 18, 6097–6099. [Google Scholar] [CrossRef]
- Ko, W.Y.; Chen, W.H.; Cheng, C.Y.; Lin, K.J. Highly Electrocatalytic Reduction of Nitrite Ions on a Copper Nanoparticles Thin Film. Sens. Actuators B Chem. 2009, 137, 437–441. [Google Scholar] [CrossRef]
- Ko, W.Y.; Chen, W.H.; Cheng, C.Y.; Lin, K.J. Architectural Growth of Cu Nanoparticles through Electrodeposition. Nanoscale Res. Lett. 2009, 4, 1481–1485. [Google Scholar] [CrossRef]
- Wang, L. Preparation and Characterization of Properties of Electrodeposited Copper Oxide Films; The University of Texas at Arlington: Arlington, TX, USA, 2006. [Google Scholar]
- Giri, S.D.; Sarkar, A. Electrochemical Study of Bulk and Monolayer Copper in Alkaline Solution. J. Electrochem. Soc. 2016, 163, H252–H259. [Google Scholar] [CrossRef]
- Kim, S.; Kim, Y.; Jung, J.; Chae, W.S. Photoassisted Electrodeposition of a Copper(I) Oxide Film. Mater. Trans. 2015, 56, 377–380. [Google Scholar] [CrossRef] [Green Version]
- Free, M.; Rodchanarowan, A.; Phadke, N.; Bhide, R. Evaluation of the Effects of Additives, Pulsing, and Temperature on Morphologies of Copper Electrodeposited from Chloride Media. ECS Trans. 2006, 2, 335–343. [Google Scholar] [CrossRef]
- Akbari, R.; Godeau, G.; Mohammadizadeh, M.R.; Guittard, F.; Darmanin, T. Fabrication of Superhydrophobic Hierarchical Surfaces by Square Pulse Electrodeposition: Copper-Based Layers on Gold/Silicon (100) Substrates. Chempluschem 2019, 84, 368–373. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.-C.; Nguyen, D.T.; Chang, Y.-W. Precise Optical Surface Profilometry Using Innovative Chromatic Differential Confocal Microscopy. Opt. Lett. 2016, 41, 5660. [Google Scholar] [CrossRef] [PubMed]
- Vorburger, T.V.; Rhee, H.G.; Renegar, T.B.; Song, J.F.; Zheng, A. Comparison of Optical and Stylus Methods for Measurement of Surface Texture. Int. J. Adv. Manuf. Technol. 2007, 33, 110–118. [Google Scholar] [CrossRef]
- Chand, M.; Mehta, A.; Sharma, R.; Ojha, V.N.; Chaudhary, K.P. Roughness Measurement Using Optical Profiler with Self-Reference Laser and Stylus Instrument—A Comparative Study. Indian J. Pure Appl. Phys. 2011, 49, 335–339. [Google Scholar]
- Akbari, R.; Antonini, C. Contact Angle Measurements: From Existing Methods to an Open-Source Tool. Adv. Colloid Interface Sci. 2021, 294, 102470. [Google Scholar] [CrossRef]
- Siegfried, M.J.; Choi, K.S. Electrochemical Crystallization of Cuprous Oxide with Systematic Shape Evolution. Adv. Mater. 2004, 16, 1743–1746. [Google Scholar] [CrossRef]
- Siegfried, M.J.; Choi, K.-S. Directing the Architecture of Cuprous Oxide Crystals during Electrochemical Growth. Angew. Chem. 2005, 117, 3282–3287. [Google Scholar] [CrossRef]
- Siegfried, M.J.; Choi, K.S. Elucidating the Effect of Additives on the Growth and Stability of Cu2O Surfaces via Shape Transformation of Pre-Grown Crystals. J. Am. Chem. Soc. 2006, 128, 10356–10357. [Google Scholar] [CrossRef]
- Siegfried, M.J.; Choi, K.S. Elucidation of an Overpotential-Limited Branching Phenomenon Observed during the Electrocrystallization of Cuprous Oxide. Angew. Chem.-Int. Ed. 2008, 47, 368–372. [Google Scholar] [CrossRef]
- Tam, J.; Palumbo, G.; Erb, U.; Azimi, G. Robust Hydrophobic Rare Earth Oxide Composite Electrodeposits. Adv. Mater. Interfaces 2017, 4, 1700850. [Google Scholar] [CrossRef]
- Hassebrook, A.C. Applications of Femtosecond Laser Processed Metallic Surfaces: Leidenfrost Point and Thermal Stability of Rare Earth Oxide Coatings; University of Nebraska-Lincoln: Lincoln, NE, USA, 2017. [Google Scholar]
- Preston, D.J.; Miljkovic, N.; Sack, J.; Enright, R.; Queeney, J.; Wang, E.N. Effect of Hydrocarbon Adsorption on the Wettability of Rare Earth Oxide Ceramics Effect of Hydrocarbon Adsorption on the Wettability of Rare Earth Oxide Ceramics. Appl. Phys. Lett. 2014, 105, 011601. [Google Scholar] [CrossRef]
- Boyce, J.M. Modern Technologies for Improving Cleaning and Disinfection of Environmental Surfaces in Hospitals. Antimicrob. Resist. Infect. Control 2016, 5, 10. [Google Scholar] [CrossRef] [PubMed]
- González, C.M. Cleaning with UV Light. Mech. Eng. 2021, 143, 32–33. [Google Scholar] [CrossRef]
- ASTM D 4060-10; Standard Test Method for Abrasion Resistance of Organic Coatings by the Taber. ASTM International: West Conshohocken, PA, USA, 2010. [CrossRef]
- Zhang, Y.; Liu, J.; Ouyang, L.; Li, J.; Xie, G.; Yan, Y.; Weng, C. One-Step Preparation of Robust Superhydrophobic Foam for Oil/Water Separation by Pulse Electrodeposition. Langmuir 2021, 37, 7043–7054. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akbari, R.; Mohammadizadeh, M.R.; Antonini, C.; Guittard, F.; Darmanin, T. Controlling Morphology and Wettability of Intrinsically Superhydrophobic Copper-Based Surfaces by Electrodeposition. Coatings 2022, 12, 1260. https://doi.org/10.3390/coatings12091260
Akbari R, Mohammadizadeh MR, Antonini C, Guittard F, Darmanin T. Controlling Morphology and Wettability of Intrinsically Superhydrophobic Copper-Based Surfaces by Electrodeposition. Coatings. 2022; 12(9):1260. https://doi.org/10.3390/coatings12091260
Chicago/Turabian StyleAkbari, Raziyeh, Mohammad Reza Mohammadizadeh, Carlo Antonini, Frédéric Guittard, and Thierry Darmanin. 2022. "Controlling Morphology and Wettability of Intrinsically Superhydrophobic Copper-Based Surfaces by Electrodeposition" Coatings 12, no. 9: 1260. https://doi.org/10.3390/coatings12091260
APA StyleAkbari, R., Mohammadizadeh, M. R., Antonini, C., Guittard, F., & Darmanin, T. (2022). Controlling Morphology and Wettability of Intrinsically Superhydrophobic Copper-Based Surfaces by Electrodeposition. Coatings, 12(9), 1260. https://doi.org/10.3390/coatings12091260