Study of Electromagnetic Shielding Properties of Composites Based on Glass Fiber Metallized with Metal Films
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Electron Microscopy and EDX Microanalysis
3.2. VNA Measurement
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, X.-Y.; Zhang, P.-Y. Mobile technology in health information systems: A review. Eur. Rev. Med. Pharmacol. Sci. 2016, 10, 2140–2143. [Google Scholar]
- Subhan, F.; Khan, A.; Ahmed, S.; Malik, M.; Bakshah, S.; Tahir, S. Mobile Antenna’s and Its Impact on Human Health. J. Med. Imaging Health Inf. 2018, 8, 1266–1273. [Google Scholar] [CrossRef]
- Batool, S.; Bibi, A.; Frezza, F.; Mangini, F. Benefits and hazards of electromagnetic waves, telecommunication, physical and biomedical: A review. Eur. Rev. Med. Pharmacol. Sci. 2019, 23, 3121–3128. [Google Scholar] [PubMed]
- Bandara, P.; Carpenter, D.O. Planetary electromagnetic pollution: It is time to assess its impact. Lancet 2018, 2, E512–E514. [Google Scholar] [CrossRef]
- Wongkasem, N. Electromagnetic pollution alert: Microwave radiation and absorption in human organs and tissues. Electromagn. Biol. Med. 2021, 2, 236–253. [Google Scholar] [CrossRef]
- Simkó, M.; Mattsson, M.O. 5G Wireless communication and health effects—A pragmatic review based on available studies regarding 6 to 100 GHz. Int. J. Environ. Res. Public Health 2019, 16, 3406. [Google Scholar] [CrossRef]
- Hardell, L.; Carlberg, M. Health risks from radiofrequency radiation, including 5G, should be assessed by experts with no conflicts of interest. Oncol. Lett. 2020, 20, A93. [Google Scholar] [CrossRef]
- Karipidis, K.; Brzozek, C.; Bhatt, C.R.; Loughran, S.; Wood, A. What evidence exists on the impact of anthropogenic radiofrequency electromagnetic fields on animals and plants in the environment A systematic map protocol. Environ. Evid. 2021, 10, 1–9. [Google Scholar] [CrossRef]
- Karipidis, K.; Mate, R.; Urban, D.; Tinker, R.; Wood, A. 5G mobile networks and health –a state-of-the-science review of the research into low-level RF fields above 6 GHz. J. Expo. Sci. Environ. Epidemiol. 2021, 31, 585–605. [Google Scholar] [CrossRef]
- Dai, Y.S.; Lu, C.H.; Ni, Y.R.; Xu, Z.Z. Radar-wave absorbing property of cement-based composite doped with steel slag. J. Chin. Ceram. Soc. 2009, 37, 2097–2101. [Google Scholar]
- Baoyi, L.; Yuping, D.; Shunhua, L. The electromagnetic characteristics of fly ash and absorbing properties of cement-based composites using fly ash as cement replacement. Constr. Build. Mater. 2012, 27, 184–188. [Google Scholar] [CrossRef]
- Fan, Y.; Zhang, L.; Volski, V.; Vandenbosch, G.; Blanpain, B.; Guo, M. Utilization of stainless-steel furnace dust as an admixture for synthesis of cement-based electromagnetic interference shielding composites. Int. J. Sci. Rep. 2017, 7, 15368. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Zhang, B.; Song, J.; Volski, V.; Vandenbosch, G.; Guo, M. An innovated application of reutilize copper smelter slag for cement-based electromagnetic interference composites. Int. J. Sci. Rep. 2018, 8, 16155. [Google Scholar] [CrossRef] [PubMed]
- Vyzulin, S.A.; Buz’ko VYu Kalikintseva, D.A.; Goryachko, A.I.; Sarin, L.I.; Kolantsov, O.A.; Syr’ev, N.E. Magnetic and dielectric properties of composites based on magnetic microspheres. J. Phys. Conf. Ser. 2019, 1389, 012161. [Google Scholar] [CrossRef]
- Buz’ko, V.; Shamray, I.; Goryachko, A.; Udodov, S.; Abashin, A. Electromagnetic characteristics of biosilica from rice husk. E3S Web Conf. 2021, 263, 01013. [Google Scholar] [CrossRef]
- Buzko, V.Y.; Udodov, S.A.; Charikov, G.Y.; Ivanin, S.N.; Goryachko, A.I.; Litvinov, A.E.; Shutkin, I.Y.; Astakhov, V.A. Properties of radio-absorbing composites concrete–micropowders St3. Scie. Works KubSTU:About 2021, 5, 20–30. [Google Scholar]
- Buzko, V.Y.; Udodov, S.A.; Litvinov, A.E.; Ivanin, S.N.; Goryachko, A.I.; Charikov, G.Y. Properties of radio-absorbing composites concrete–micropowders of the brass. Sci. Works KubSTU:About 2021, 5, 31–39. [Google Scholar]
- Lee, N.; Park, G.; Pae, J.; Juhyuk Moon, J.; Kim, S. Relationship between Three-Dimensional Steel Fiber Statistics and Electromagnetic Shielding Effectiveness of High-Performance, Fiber-Reinforced Cementitious Composites. Materials 2020, 13, 5125. [Google Scholar] [CrossRef]
- Yuan, T.F.; Choi, J.S.; Kim, S.K.; Yoon, Y.S. Assessment of Steel Slag and Steel Fiber to Control Electromagnetic Shielding in High-Strength Concrete. KSCE J. Civ. Eng. 2021, 25, 920–930. [Google Scholar] [CrossRef]
- Tong, X.C. Advanced Materials and Design for Electromagnetic Interference Shielding; CRC Press: Boca Raton, FL, USA, 2009; p. 344. [Google Scholar]
- Vlasov, A.I.; Elsukov, K.A.; Kosolapov, I.A. Electron Microscopy: Tutorial; Publishing House Bauman University: Moscow, Russia, 2011; p. 168. [Google Scholar]
- Lopez-Melendez, C.; Garcia-Ochoa, E.M.; Flores-Zamora, M.I.; Bautista-Margulis, R.G.; Carreño-Gallardo, C.; Morquecho, C.C.; Chacon-Nava, J.G.; Martínez-Villafañe, A. Dynamic Study of Current Fluctuations of Nanostructured Films. Int. J. Electrochem. Sci. 2012, 7, 1160–1169. [Google Scholar]
- Yiu, P.; You, J.-D.; Wang, S.-T.; Chu, J.P. Tunable hydrophilicity in a surface nano-textured stainless steel thin film deposited by DC magnetron sputtering. Appl. Surf. Sci. 2021, 555, 149705. [Google Scholar]
- Bobaru, S.; Rico-Gavira, A.; García-Valenzuela, A.; CarmenLópez-Santos, C.; González-Elipe, A.R. Electron beam evaporated vs. magnetron sputtered nanocolumnar porous stainless steel: Corrosion resistance, wetting behavior and anti-bacterial activity. Mater. Today Commun. 2022, 31, 103266. [Google Scholar] [CrossRef]
- Periyasamy, A.P.; Muthusamy, L.P.; Militký, J. Neural network model applied to electromagnetic shielding effectiveness of ultra-light Ni/Cu coated polyester fibrous materials. Sci. Rep. 2022, 12, 8609. [Google Scholar] [CrossRef] [PubMed]
- Shukla, V. Review of electromagnetic interference shielding materials fabricated by iron ingredients. Nanoscale Adv. 2019, 1, 1640–1671. [Google Scholar] [CrossRef]
Metal | Composition, wt.% | Deposition Rate | Current Strength |
---|---|---|---|
brass | Cu–60.78%, Zn–39.22%. | 40 nm/min | 80 mA |
neusilber | Cu–57.31%, Zn–29.90%, Ni–12.79% | 34 nm/min | 80 mA |
AISI SS304 | Fe–70.71%, Cr–19.71%, Ni–8.04%, Mn–1.05%, Si–0.49% | 20 nm/min | 80 mA |
Filler Fraction, (wt.%) | SETot (2.5–2.7 GHz) | SETot (4.7–5.0 GHz) | tgɛ (2.5–2.7 GHz) | tgɛ (4.7–5.0 GHz) |
---|---|---|---|---|
- | brass-metallized glass fibers | |||
2.5 | −9.15 ± 0.01 | −14.93 ± 0.02 | 0.264 ± 0.002 | 0.538 ± 0.003 |
5 | −13.72 ± 0.05 | −21.15 ± 0.07 | 0.352 ± 0.007 | 0.721 ± 0.012 |
- | neusilber-metallized glass fibers | |||
2.5 | −6.07 ± 0.05 | −10.48 ± 0.06 | 0.292 ± 0.002 | 0.439 ± 0.003 |
5 | −11.84 ± 0.02 | −16.95 ± 0.02 | 0.468 ± 0.005 | 0.679 ± 0.006 |
- | SS304-metallized glass fibers | |||
2.5 | −2.94 ± 0.04 | −5.03 ± 0.06 | 0.204 ± 0.003 | 0.245 ± 0.004 |
5 | −6.98 ± 0.04 | −10.78 ± 0.05 | 0.319 ± 0.003 | 0.383 ± 0.005 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Buzko, V.; Babushkin, M.; Ivanin, S.; Goryachko, A.; Petriev, I. Study of Electromagnetic Shielding Properties of Composites Based on Glass Fiber Metallized with Metal Films. Coatings 2022, 12, 1173. https://doi.org/10.3390/coatings12081173
Buzko V, Babushkin M, Ivanin S, Goryachko A, Petriev I. Study of Electromagnetic Shielding Properties of Composites Based on Glass Fiber Metallized with Metal Films. Coatings. 2022; 12(8):1173. https://doi.org/10.3390/coatings12081173
Chicago/Turabian StyleBuzko, Vladimir, Maxim Babushkin, Sergey Ivanin, Alexander Goryachko, and Iliya Petriev. 2022. "Study of Electromagnetic Shielding Properties of Composites Based on Glass Fiber Metallized with Metal Films" Coatings 12, no. 8: 1173. https://doi.org/10.3390/coatings12081173
APA StyleBuzko, V., Babushkin, M., Ivanin, S., Goryachko, A., & Petriev, I. (2022). Study of Electromagnetic Shielding Properties of Composites Based on Glass Fiber Metallized with Metal Films. Coatings, 12(8), 1173. https://doi.org/10.3390/coatings12081173