Failure Analysis of Thermal Corrosion Cycling of EB-PVD YSZ Thermal Barrier Coatings Exposed to Molten NaCl
Abstract
:1. Introduction
2. Experimental Procedure
2.1. Coating Deposition
2.2. Corrosion Tests
2.3. Characterization
3. Results and Discussions
3.1. Preparation and Characterization of YSZ Coating
3.2. Corrosion Behavior of YSZ Coating
3.2.1. Selected Visual Images
3.2.2. Surface Morphologies and Phase Composition
3.2.3. Cross-Sectional Morphologies
3.3. Corrosion Mechanisms
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Evans, A.G.; Mumm, D.R.; Hutchinson, J.W.; Meier, G.H.; Pettit, F.S. Mechanisms controlling the durability of thermal barrier coatings. Prog. Mater. Sci. 2001, 46, 505–553. [Google Scholar] [CrossRef]
- Padture, N.P.; Gell, M.; Jordan, E.H. Thermal barrier coatings for gas-turbine engine applications. Science 2002, 296, 280–284. [Google Scholar] [CrossRef] [PubMed]
- Levi, C.G. Emerging materials and processes for thermal barrier systems. Curr. Opin. Solid State Mater. Sci. 2004, 8, 77–91. [Google Scholar] [CrossRef]
- Vaßen, R.; Jarligo, M.O.; Steinke, T.; Mack, D.E.; Stöver, D. Overview on advanced thermal barrier coatings. Surf. Coat. Technol. 2010, 205, 938–942. [Google Scholar] [CrossRef]
- Clarke, D.R.; Oechsner, M.; Padture, N.P. Thermal-barrier coatings for more efficient gas-turbine engines. MRS Bull. 2012, 37, 891–898. [Google Scholar] [CrossRef] [Green Version]
- Belmonte, M. Advanced ceramic materials for high temperature applications. Adv. Eng. Mater. 2006, 8, 693–703. [Google Scholar] [CrossRef] [Green Version]
- Beele, W.; Marijnissen, G.; Lieshout, A.V. The evolution of thermal barrier coatings — status and upcoming solutions for today’s key issues. Surf. Coat. Technol. 1999, 120–121, 61–67. [Google Scholar] [CrossRef]
- Li, C.; He, J.; Ma, Y.; Guo, H. Evolution mechanism of the microstructure and mechanical properties of plasma-sprayed yttria-stabilized hafnia thermal barrier coating at 1400 °C. Ceram. Int. 2020, 46, 23417–23426. [Google Scholar] [CrossRef]
- Vaßen, R.; Kaßner, H.; Stuke, A.; Hauler, F.; Hathiramani, D.; Stöver, D. Advanced thermal spray technologies for applications in energy systems. Surf. Coat. Technol. 2008, 202, 4432–4437. [Google Scholar] [CrossRef]
- Miller, R.A. Current status of thermal barrier coatings—An overview. Surf. Coat. Technol. 1987, 30, 1–11. [Google Scholar] [CrossRef]
- Schafer, G.W.; Gadow, R. Lanthane Aluminate thermal barrier coating. J. Am. Ceram. Soc. 1999, 20, 291–297. [Google Scholar] [CrossRef]
- Cao, X.Q.; Vassen, R.; Stoever, D. Ceramic materials for thermal barrier coatings. J. Eur. Ceram. Soc. 2004, 24, 1–10. [Google Scholar] [CrossRef]
- Schulz, U.; Fritscher, K.; Leyens, C. Two-source jumping beam evaporation for advanced EB-PVD TBC systems. Surf. Coat. Technol. 2000, 133–134, 40–48. [Google Scholar] [CrossRef]
- Taylor, R.; Brandon, J.R.; Morrell, P. Microstructure, composition and property relationships of plasma-sprayed thermal barrier coatings. Surf. Coat. Technol. 1992, 50, 141–149. [Google Scholar] [CrossRef]
- Clarke, D.R.; Phillpot, S.R. Thermal barrier coating materials. Mater. Today 2005, 8, 22–29. [Google Scholar] [CrossRef]
- Jones, R.L.; Williams, C.E.; Jones, S.R. Reaction of Vanadium Compounds with Ceramic Oxides. J. Electrochem. Soc. 1986, 133, 227–230. [Google Scholar] [CrossRef]
- Ozgurluk, Y.; Doleker, K.; Ozkan, D.; Ahlatci, H.; Karaoglanli, A. Cyclic Hot Corrosion Failure Behaviors of EB-PVD TBC Systems in the Presence of Sulfate and Vanadate Molten Salts. Coatings 2019, 9, 166. [Google Scholar] [CrossRef] [Green Version]
- Yugeswaran, S.; Kobayashi, A.; Ananthapadmanabhan, P.V. Hot corrosion behaviors of gas tunnel type plasma sprayed La2Zr2O7 thermal barrier coatings. J. Eur. Ceram. Soc. 2012, 32, 823–834. [Google Scholar] [CrossRef]
- Loghman-Estarki, M.R.; Nejati, M.; Edris, H.; Razavi, R.S.; Jamali, H.; Pakseresht, A.H. Evaluation of hot corrosion behavior of plasma sprayed scandia and yttria co-stabilized nanostructured thermal barrier coatings in the presence of molten sulfate and vanadate salt. J. Eur. Ceram. Soc. 2015, 35, 693–702. [Google Scholar] [CrossRef]
- Zaleski, E.M.; Ensslen, C.; Levi, C.G.; Butt, D. Melting and crystallization of silicate systems relevant to thermal barrier coating damage. J. Am. Ceram. Soc. 2015, 98, 1642–1649. [Google Scholar] [CrossRef]
- Shifler, D.A. Hot corrosion: A modification of reactants causing degradation. Mater. High Temp. 2018, 35, 225–235. [Google Scholar] [CrossRef]
- Sreedhar, G.; Raja, V.S. Hot corrosion of YSZ/Al2O3 dispersed NiCrAlY plasma-sprayed coatings in Na2SO4–10 wt.% NaCl melt. Corros. Sci. 2010, 52, 2592–2602. [Google Scholar] [CrossRef]
- Gurrappa, I. Identification of hot corrosion resistant MCrAlY based bond coatings for gas turbine engine applications. Surf. Coat. Technol. 2001, 139, 272–283. [Google Scholar] [CrossRef]
- Jones, R.L. Some aspects of the hot corrosion of thermal barrier coatings. J. Therm. Spray Technol. 1997, 6, 77–84. [Google Scholar] [CrossRef] [Green Version]
- Ajay, A.; Raja, V.S.; Sivakumar, G.; Joshi, S.V. Hot corrosion behavior of solution precursor and atmospheric plasma sprayed thermal barrier coatingse. Corros. Sci. 2015, 98, 271–279. [Google Scholar] [CrossRef]
- Guo, L.; Xin, H.; Hu, C.; Raja, V.S. Comparison of NaVO3+CMAS mixture and CMAS corrosion to thermal barrier coatings. Corros. Sci. 2020, 177, 108968–108977. [Google Scholar] [CrossRef]
- Zhang, C.; Fei, J.; Guo, L.; Yu, J.; Zhang, B.; Yan, Z.; Ye, F. Thermal cycling and hot corrosion behavior of a novel LaPO4/YSZ double-ceramic-layer thermal barrier coating. Ceram. Int. 2018, 44, 8818–8826. [Google Scholar] [CrossRef]
- Zhou, C.; Wang, C.; Song, Y. Evaluation of cyclic oxidation of thermal barrier coatings exposed to NaCl vapor by finite element method. Mat. Sci. Eng. A-Struct. 2008, 490, 351–358. [Google Scholar] [CrossRef]
- Song, Y.; Zhou, C.; Xu, H. Corrosion behavior of thermal barrier coatings exposed to NaCl plus water vapor at 1050 °C. Thin Solid Film. 2008, 516, 5686–5689. [Google Scholar] [CrossRef]
- Pomeroy, M.J. Coatings for gas turbine materials and long term stability issues. Mater. Design. 2005, 26, 223–231. [Google Scholar] [CrossRef]
- Goward, G.W. Progress in coatings for gas turbine airfoils. Surf. Coat. Technol. 1998, 108–109, 73–79. [Google Scholar] [CrossRef]
- Jonnalagadda, K.P.; Mahade, S.; Kramer, S.; Zhang, P.; Curry, N.; Li, X.-H.; Peng, R.L. Failure of multilayer suspension plasma sprayed thermal barrier coatings in the presence of Na2SO4 and NaCl at 900 °C. J. Therm. Spray Technol. 2018, 28, 212–222. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.W.; Ning, X.J.; Lu, L.; Wang, Q.S.; Wang, L. Hot corrosion behavior of low-pressure cold-sprayed CoNiCrAlY coatings. J. Therm. Spray Technol. 2016, 25, 587–594. [Google Scholar] [CrossRef]
- Bao, Z.B.; Wang, Q.M.; Li, W.Z.; Liu, X.; Gong, J.; Xiong, T.Y.; Sun, C. Preparation and hot corrosion behaviour of an Al-gradient NiCoCrAlYSiB coating on a Ni-base superalloy. Corros. Sci. 2009, 51, 860–867. [Google Scholar] [CrossRef]
- Ma, J.; Jiang, S.M.; Gong, J.; Sun, C. Hot corrosion properties of composite coatings in the presence of NaCl at 700 and 900 °C. Corros. Sci. 2013, 70, 29–36. [Google Scholar] [CrossRef]
- Shinata, Y. Accelerated oxidation rate of chromium induced by sodium chloride. Oxid. Met. 1987, 27, 315–332. [Google Scholar] [CrossRef]
Layer | Current of Electron Beam (A) | Voltage (KV) | Rotation Speed (rpm) | Deposition Rate (μm/min) |
---|---|---|---|---|
YSZ | Gun3# 1.55–1.65 | 20.0 | 20 | 3.0–3.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Xie, M.; Li, R.; Pei, X.; Zhang, Y.; Mu, R.; Song, X. Failure Analysis of Thermal Corrosion Cycling of EB-PVD YSZ Thermal Barrier Coatings Exposed to Molten NaCl. Coatings 2022, 12, 1065. https://doi.org/10.3390/coatings12081065
Liu Y, Xie M, Li R, Pei X, Zhang Y, Mu R, Song X. Failure Analysis of Thermal Corrosion Cycling of EB-PVD YSZ Thermal Barrier Coatings Exposed to Molten NaCl. Coatings. 2022; 12(8):1065. https://doi.org/10.3390/coatings12081065
Chicago/Turabian StyleLiu, Yang, Min Xie, Ruiyi Li, Xun Pei, Yonghe Zhang, Rende Mu, and Xiwen Song. 2022. "Failure Analysis of Thermal Corrosion Cycling of EB-PVD YSZ Thermal Barrier Coatings Exposed to Molten NaCl" Coatings 12, no. 8: 1065. https://doi.org/10.3390/coatings12081065
APA StyleLiu, Y., Xie, M., Li, R., Pei, X., Zhang, Y., Mu, R., & Song, X. (2022). Failure Analysis of Thermal Corrosion Cycling of EB-PVD YSZ Thermal Barrier Coatings Exposed to Molten NaCl. Coatings, 12(8), 1065. https://doi.org/10.3390/coatings12081065