Capsaicin-Modified Fluorosilicone Based Acrylate Coating for Marine Anti-Biofouling
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Preparation of Capsaicin Modified HMBA
2.3. Preparation of PRE Coatings
2.4. Characterization
2.5. Water Contact Angles and Surface Free Energy
2.6. Adhesion Test
2.7. Pencil Hardness Test
2.8. Antibacterial Assays
2.9. Diatom Settlement
3. Results and Discussion
3.1. Structural Characterization
3.2. Mechanical Properties
3.3. Surface Properties
3.4. Antibacterial and Anti-Diatom Properties of the Surface
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Angarano, M.-B.; McMahon, R.F.; Hawkins, D.L.; Schetz, J.A. Exploration of structure-antifouling relationships of capsaicin-like compounds that inhibit zebra mussel (Dreissena polymorpha) macrofouling. Biofouling 2007, 23, 295–305. [Google Scholar] [CrossRef] [PubMed]
- Clare, A.S.; Evans, L.V. Marine Biofouling: Introduction. Biofouling 2000, 16, 81–82. [Google Scholar] [CrossRef]
- Schultz, M.P. Effects of coating roughness and biofouling on ship resistance and powering. Biofouling 2007, 23, 331–341. [Google Scholar] [CrossRef]
- Banerjee, I.; Pangule, R.C.; Kane, R.S. Antifouling Coatings: Recent Developments in the Design of Surfaces That Prevent Fouling by Proteins, Bacteria, and Marine Organisms. Adv. Mater. 2011, 23, 690–718. [Google Scholar] [CrossRef]
- Evans, S.M.; Leksono, T.; McKinnell, P.D. Tributyltin pollution: A diminishing problem following legislation limiting the use of TBT-based anti-fouling paints. Mar. Pollut. Bull. 1995, 30, 14–21. [Google Scholar] [CrossRef]
- Lu, Z.; Chen, Z.; Guo, Y.; Ju, Y.; Liu, Y.; Feng, R.; Xiong, C.; Ober, C.K.; Dong, L. Flexible Hydrophobic Antifouling Coating with Oriented Nanotopography and Nonleaking Capsaicin. ACS Appl. Mater. Interfaces 2018, 10, 9718–9726. [Google Scholar] [CrossRef]
- Peres, R.S.; Armelin, E.; Alemán, C.; Ferreira, C.A. Modified tannin extracted from black wattle tree as an environmentally friendly antifouling pigment. Ind. Crops Prod. 2015, 65, 506–514. [Google Scholar] [CrossRef] [Green Version]
- Perez, M.; Garcia, M.; Ruiz, D.; Autino, J.C.; Romanelli, G.; Blustein, G. Antifouling activity of green-synthesized 7-hydroxy-4-methylcoumarin. Mar. Environ. Res. 2016, 113, 134–140. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.L.; Dai, J.X.; Wu, L.L.; Fang, G.Z.; Guo, Z.H. Enhanced anti-ultraviolet, anti-fouling and anti-bacterial polyelectrolyte membrane of polystyrene grafted with trimethyl quaternary ammonium salt modified lignin. Polymer 2017, 114, 113–121. [Google Scholar] [CrossRef]
- Jin, H.; Tian, L.; Bing, W.; Zhao, J.; Ren, L. Bioinspired marine antifouling coatings: Status, prospects, and future. Prog. Mater. Sci. 2022, 124, 100889. [Google Scholar] [CrossRef]
- Hao, X.; Chen, S.; Qin, D.; Zhang, M.; Li, W.; Fan, J.; Wang, C.; Dong, M.; Zhang, J.; Cheng, F.; et al. Antifouling and antibacterial behaviors of capsaicin-based pH responsive smart coatings in marine environments. Mater. Sci. Eng. C Mater. Biol. Appl. 2020, 108, 110361. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Zhang, L.; Shan, C.; Xu, L.; Yu, L.; Gao, H. Enhancing the permeance and antifouling properties of thin-film composite nanofiltration membranes modified with hydrophilic capsaicin-mimic moieties. J. Membr. Sci. 2020, 610, 118233. [Google Scholar] [CrossRef]
- Wang, X.; Yu, L.; Li, F.; Zhang, G.; Zhou, W.; Jiang, X. Synthesis of amide derivatives containing capsaicin and their antioxidant and antibacterial activities. J. Food Biochem. 2019, 43, e13061. [Google Scholar] [CrossRef]
- Wang, X.; Yu, L.; Liu, Y.; Jiang, X. Synthesis and fouling resistance of capsaicin derivatives containing amide groups. Sci. Total Environ. 2020, 710, 136361. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.; Jiang, X.; Yu, L.; Xia, S.; Yu, X. Synthesis and Quantum Chemical Calculation of Benzamide Derivatives Containing Capsaicin and Their Bacteriostatic and Antifouling Properties. J. Chin. Chem. Soc. 2015, 62, 861–870. [Google Scholar] [CrossRef]
- Zhang, L.L.; Xu, J.; Tang, Y.Y.; Hou, J.W.; Yu, L.M.; Gao, C.J. A novel long-lasting antifouling membrane modified with bifunctional capsaicin-mimic moieties via in situ polymerization for efficient water purification. J. Mater. Chem. A 2016, 4, 10352–10362. [Google Scholar] [CrossRef]
- Liu, H.; Lepoittevin, B.; Roddier, C.; Guerineau, V.; Bech, L.; Herry, J.-M.; Bellon-Fontaine, M.-N.; Roger, P. Facile synthesis and promising antibacterial properties of a new guaiacol-based polymer. Polymer 2011, 52, 1908–1916. [Google Scholar] [CrossRef]
- Wang, H.; Jasensky, J.; Ulrich, N.W.; Cheng, J.; Huang, H.; Chen, Z.; He, C. Capsaicin-Inspired Thiol-Ene Terpolymer Networks Designed for Antibiofouling Coatings. Langmuir 2017, 33, 13689–13698. [Google Scholar] [CrossRef]
- Ai, L.; Cao, H.M.; Zhu, Y.W. Preparation of Silicone-Modified Acrylate Latex and Its Application for Low-Emission Printing of Pet Fibre. Autex Res. J. 2019, 19, 293–300. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.L.; Jiao, X.J.; Cheng, F.; Fan, Y.X.; Wu, Y.F.; Yang, X.F. Fabrication and performance of UV cured transparent silicone modified polyurethane-acrylate coatings with high hardness, good thermal stability and adhesion. Prog. Org. Coat. 2020, 144, 105673. [Google Scholar] [CrossRef]
- Wu, Y.M.; Zhu, C.C.; Yanchen, Z.Z.; Qiu, H.; Ma, H.Y.; Gao, C.H.; Liu, Y.T. A type of silicone modified styrene-acrylate latex for weatherable coatings with improved mechanical strength and anticorrosive properties. React. Funct. Polym. 2020, 148, 104484. [Google Scholar] [CrossRef]
- Chen, L.; Li, L.; Zhao, X.; Wang, S.S.; Li, Y.C.; Li, G.; Ge, X.C.; Wang, L.P. Construction of antifouling fluorinated polymer brush via activators regenerated by electron transfer ATRP and thiol-epoxy click reaction. React. Funct. Polym. 2021, 165, 104974. [Google Scholar] [CrossRef]
- Wu, J.H.; Wang, C.H.; Lin, W.; Ngai, T. A facile and effective approach for the synthesis of fluorinated waterborne polyurethanes with good hydrophobicity and antifouling properties. Prog. Org. Coat. 2021, 159, 106405. [Google Scholar] [CrossRef]
- Zhou, J.S.; Sun, Y.G.; Huang, Z.X.; Luo, Z.K.; Yu, B.; Zou, X.H.; Hu, H.Y. Growing antifouling fluorinated polymer brushes on polyvinyl alcohol hydrogel surface via g-C3N4@InVO4 catalyzed surface-initiated photo atom transfer radical polymerization. Colloid Surf. A 2021, 622, 126598. [Google Scholar] [CrossRef]
- Zhang, Y.H.; Cui, C.Y.; Sun, Y.G.; Zhang, X.P.; Yang, R.; Yang, J.H.; Xie, F.; Liu, W.G. A hyperbranched polymer-based water-resistant adhesive: Durable underwater adhesion and primer for anchoring anti-fouling hydrogel coating. Sci. China Technol. Sci. 2021, 65, 201–213. [Google Scholar] [CrossRef]
- Sun, J.; Liu, C.; Duan, J.; Liu, J.; Dong, X.; Zhang, Y.; Wang, N.; Wang, J.; Hou, B. Facile fabrication of self-healing silicone-based poly(urea-thiourea)/tannic acid composite for anti-biofouling. J. Mater. Sci. Technol. 2022, 124, 1–13. [Google Scholar] [CrossRef]
- Tsuji, Y.; Yoshizawa, K. Competition between Hydrogen Bonding and Dispersion Force in Water Adsorption and Epoxy Adhesion to Boron Nitride: From the Flat to the Curved. Langmuir 2021, 37, 11351–11364. [Google Scholar] [CrossRef]
- Zhang, B.; Zhang, X.; Wan, K.N.; Zhu, J.X.; Xu, J.S.; Zhang, C.; Liu, T.X. Dense Hydrogen-Bonding Network Boosts Ionic Conductive Hydrogels with Extremely High Toughness, Rapid Self-Recovery, and Autonomous Adhesion for Human-Motion Detection. Research 2021, 2021, 9761625. [Google Scholar] [CrossRef]
- Wang, T.; Huang, L.; Liu, Y.Z.; Li, X.X.; Liu, C.H.; Handschuh-Wang, S.; Xu, Y.; Zhao, Y.; Tang, Y.B. Robust Biomimetic Hierarchical Diamond Architecture with a Self-Cleaning, Antibacterial, and Antibiofouling Surface. ACS Appl. Mater. Inter. 2020, 12, 24432–24441. [Google Scholar] [CrossRef]
- Liu, W.R.; Mei, J.; Xie, J. Elucidating Antibacterial Activity and Mechanism of Daphnetin against Pseudomonas fluorescens and Shewanella putrefaciens’. J. Food Qual. 2020, 2020, 6622355. [Google Scholar] [CrossRef]
- Sternisa, M.; Bucar, F.; Kunert, O.; Mozina, S.S. Targeting fish spoilers Pseudomonas and Shewanella with oregano and nettle extracts. Int. J. Food Microbiol. 2020, 328, 108664. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Sun, J.; Duan, J.; Dong, X.; Wang, X.; Liu, C.; Hou, B. Capsaicin-Modified Fluorosilicone Based Acrylate Coating for Marine Anti-Biofouling. Coatings 2022, 12, 988. https://doi.org/10.3390/coatings12070988
Liu J, Sun J, Duan J, Dong X, Wang X, Liu C, Hou B. Capsaicin-Modified Fluorosilicone Based Acrylate Coating for Marine Anti-Biofouling. Coatings. 2022; 12(7):988. https://doi.org/10.3390/coatings12070988
Chicago/Turabian StyleLiu, Jie, Jiawen Sun, Jizhou Duan, Xucheng Dong, Xinping Wang, Chao Liu, and Baorong Hou. 2022. "Capsaicin-Modified Fluorosilicone Based Acrylate Coating for Marine Anti-Biofouling" Coatings 12, no. 7: 988. https://doi.org/10.3390/coatings12070988
APA StyleLiu, J., Sun, J., Duan, J., Dong, X., Wang, X., Liu, C., & Hou, B. (2022). Capsaicin-Modified Fluorosilicone Based Acrylate Coating for Marine Anti-Biofouling. Coatings, 12(7), 988. https://doi.org/10.3390/coatings12070988