Microstructure and Nanoindentation Evolution of (Ni,Pt)Al Coating on IC21 Substrate at 1100 °C
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of (Ni,Pt)Al Coating
2.2. Thermal Exposure Test at 1100 °C
2.3. Characterizations
3. Results and Discussion
3.1. Cross-Section Morphology with and without Coating before Thermal Exposure
3.2. Cross-Section Morphology with and without Coating after Thermal Exposure
3.3. Micro Hardness and Nanoindentation
4. Conclusions
- Compared with the IC21 substrate, the (Ni,Pt)Al coating formed a continuous dense Al2O3 layer on the surface after 200 h of thermal exposure, showing a better resistance to high-temperature oxidation.
- Although there is TCP phase precipitation, the IC21 substrate with coating showed a tinier microstructure than the pure IC21 substrate after 200 h of thermal exposure, indicating the positive role of coating in maintaining the stability of the substrate.
- The nanoindentation results show that after thermal exposure at 1100 °C for 200 h, the elastic modulus of the IC21 substrate and the coating was reduced, and the TCP phase showed the biggest elastic modulus of 328 GPa.
- The sample with (Ni,Pt)Al coating had a uneven distribution of the elastic modulus, which is the main reason for the degradation of the mechanical properties.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zheng, Y.R.; Wang, X.P.; Dong, J.X.; Han, Y.F. Superalloys 2000. In Proceedings of the Proof 9th International Symposium on Superalloys, Champion, PA, USA, 17–21 September 2000; TMS: Warrendale, PA, USA, 2000; p. 305. [Google Scholar]
- Frazier, D.J.; Whetstone, J.R.; Harris, K.; Erickson, G.L. High Temperature Materials for Power Engineering; Kluwer Academic Publishers: Boston, UK, 1990; p. 1281. [Google Scholar]
- Waudby, P.E.; Benson, J.M.; Stander, C.M. Advances in Turbine Materials Design and Manufacturing; Institute of Materials: London, UK, 1997; p. 322. [Google Scholar]
- Tolpygo, V.K.; Clarke, D.R. Rumpling of CVD (Ni,Pt)Al diffusion coatings under intermediate temperature cycling. Surf. Coat. Technol. 2009, 203, 3278–3285. [Google Scholar] [CrossRef]
- Audigié, P.; Put, A.R.-V.; Malié, A.; Thouron, C.; Monceau, D. High-temperature cyclic oxidation of Pt-rich γ-γ′ bond-coatings. Part II: Effect of Pt and Al on TBC system lifetime. Corros. Sci. 2019, 150, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.F.; Jiang, C.Y.; Yao, H.R.; Bao, Z.B.; Zhu, S.L.; Wang, F.H. Cyclic oxidation and rumpling behaviour of single phase β-(Ni,Pt)Al coatings with different thickness of initial Pt plating. Corros. Sci. 2016, 111, 162–174. [Google Scholar] [CrossRef]
- Benoist, J.; Badawi, K.F.; Malie, A.; Ramade, C. Microstructure of Pt-modified aluminide coatings on Ni-based superalloys. Surf. Coat. Technol. 2004, 182, 14–23. [Google Scholar] [CrossRef]
- Yang, Y.F.; Jiang, C.Y.; Bao, Z.B.; Zhu, S.L.; Wang, F.H. Effect of aluminisation characteristics on the microstructure of single phase β-(Ni,Pt)Al coating and the isothermal oxidation behavior. Corros. Sci. 2016, 106, 43–54. [Google Scholar] [CrossRef]
- Oskay, C.; Rudolphi, M. Evolution of microstructure and mechanical properties of NiAl-Diffusion coatings after themocyclic exposure. Intermetallics 2017, 89, 22–31. [Google Scholar] [CrossRef]
- Zihao, T.; Lin, Y.; Wang, X.; Du, Y.; Ye, L. Evolution of TCP Phase During Long Term Thermal Exposure in Several Re-Containing Single Crystal Superalloys. Acta Metall. Sin. (Engl. Lett.) 2020, 33, 731–740. [Google Scholar]
- Das, D.K. Microstructure and high temperature oxidation behavior of Pt-modified aluminide bond coats on Ni-base superalloys. Prog. Mater. Sci. 2013, 58, 151–182. [Google Scholar] [CrossRef]
- Audigié, P.; Put, A.R.-V.; Malié, A.; Monceau, D. High-temperature cyclic oxidation behavior of Pt-rich γ-γ′ coatings. Part I: Oxidation kinetics of coated AM1 systems after very long-term exposure at 1100 °C. Corros. Sci. 2018, 144, 127–135. [Google Scholar]
- Jiang, C.; Qian, L.; Feng, M.; Liu, H.; Bao, Z.; Chen, M.; Zhu, S.; Wang, F. Benefits of Zr addition to oxidation resistance of a single-phase(Ni,Pt)Al coating at 1373 K. J. Mater. Sci. Technol. 2019, 35, 1334–1344. [Google Scholar] [CrossRef]
- Pauletti, E.; d’Oliveira, A.S.C.M. Influence of Pt concentration on structure of aluminized coatings on a Ni base superalloy. Surf. Coat. Technol. 2017, 332, 57–63. [Google Scholar] [CrossRef]
- Xu, Z.; Wang, Z.; Huang, G.; Mu, R.; He, L. Morphology, bond strength and thermal cycling behavior of (Ni, Pt)Al/YSZ EB-PVD thermal barrier coatings. J. Alloys Compd 2015, 651, 445–453. [Google Scholar] [CrossRef]
- Ebach-Stahl, A.; Fröhlich, M. Oxidation study of Pt–Al based coatings on γ-TiAl at 950 °C. Surf. Coat. Technol. 2016, 287, 20–24. [Google Scholar] [CrossRef] [Green Version]
- Oskay, C.; Galetz, M.C.; Murakami, H. Oxide scale formation and microstructural degradation of conventional, Pt and Pt/Ir-modified NiAl diffusion coatings during thermocyclic exposure at 1100 °C. Corros. Sci. 2018, 144, 313–327. [Google Scholar] [CrossRef]
- Jiang, C.; Qian, L.; Feng, M.; Liu, H.; Bao, Z.; Chen, M.; Zhu, S.; Wang, F. Preparation and Enhanced Hot Corrosion Resistance of a Zr-Doped PtAI2+(Ni,Pt)AI DuM-Phase Coating. Acta Metall. Sin. 2018, 54, 581–590. [Google Scholar]
- Yang, H.-Z.; Zou, J.-P.; Shi, Q.; Dai, M.-J.; Lin, S.-S.; Du, W.; Lv, L. Analysis of the microstructural evolution and interface diffusion behavior of NiCoCrAlYTa coating in high temperature oxidation. Corros. Sci. 2019, 153, 162–169. [Google Scholar] [CrossRef]
- Yu, C.T.; Liu, H.; Ullah, A.; Bao, Z.B.; Zhu, S.L.; Wang, F.H. High-temperature performance of (Ni,Pt)Al coatings on second-generation Ni-base single-crystal superalloy at 1100 °C: Effect of excess S impurities. Corros. Sci. 2019, 159, 108–115. [Google Scholar] [CrossRef]
- Ye, L.Y.; Chen, H.F.; Liu, B.; Yang, G.; Luo, H.J.; Gao, Y.F. Effect of Pt content on initial TGO formation and available Al reserve of Pt-Al coatings during thermal cycling. Surf. Coat. Technol. 2018, 337, 82–89. [Google Scholar] [CrossRef]
- Zhou, Z.; Peng, H.; Zheng, L.; Guo, H.; Gong, S. Improved oxide scale adherence of low-Pt/Hf co-doped-NiAlCrSi coating on superalloy IC21 at 1200 °C. Corros. Sci. 2016, 105, 78–87. [Google Scholar] [CrossRef]
- Liu, H.; Xu, M.M.; Li, S.; Bao, Z.B. Improving cyclic oxidation resistance of Ni3Al-based single crystal superalloy with low-diffusion platinum-modified aluminide coating. J. Mater. Sci. Technol. 2020, 54, 132–143. [Google Scholar] [CrossRef]
- Liu, Y.; Yin, B.; Deng, C. Microstructure evolution and interdiffusion behaviors of (Ni,Pt)Al coating with and without Re-diffusion barrier on IC21 substrate at 1100 °C. Mater. Charact. 2021, 181, 222450. [Google Scholar] [CrossRef]
- Anijdan, S.M.; Bahrami, A. A new method in prediction of TCP phases formation in superalloys. Mater. Sci. Eng. A 2005, 396, 138–142. [Google Scholar] [CrossRef]
- Liu, H.; Li, S.; Jiang, C.Y. Preparation and oxidation performance of a low-diffusion Pt-modified aluminide coating with Re-base diffusion barrier. Corros. Sci. 2020, 168, 105582. [Google Scholar] [CrossRef]
- Taghipour, M.; Eslami, A.; Salehi, M.; Bahrami, A. An investigation on anti-coking behavior of gas phase aluminide coatings applied on a high performance micro alloyed (HP-MA) steel. Surf. Coat. Technol. 2020, 389, 125607. [Google Scholar] [CrossRef]
- Mardiha, P.; Bahrami, A.; Mohammadnejad, A. Towards a High Strength Ductile Ni/Ni3Al/Ni Multilayer Composite using Spark Plasma Sintering. Sci. Sintering 2019, 51, 401–408. [Google Scholar] [CrossRef] [Green Version]
- Taghipour, M.; Eslami, A.; Bahrami, A. High temperature oxidation behavior of aluminide coatings applied on HP-MA heat resistant steel using a gas-phase aluminizing process. Surf. Coat. Technol. 2022, 434, 128181. [Google Scholar] [CrossRef]
- Xiao, H.; Wang, X.; Long, C. Theoretical model for determining elastic modulus of ceramic materials by nanoindentation. Materialia 2021, 17, 101121. [Google Scholar] [CrossRef]
- Dada, M.; Popoola, P.; Mathe, N.; Adeosun, S.; Pityana, S. Investigating the elastic modulus and hardness properties of a high entropy alloy coating using nanoindentation. Int. J. Lightweight Mater. 2021, 4, 339–345. [Google Scholar] [CrossRef]
- Shen, L.; Septiwerdani, P.; Chen, Z. Elastic modulus, hardness and creep performance of SnBi alloys using nanoindentation. Mater. Sci. Eng. A 2012, 558, 253–258. [Google Scholar] [CrossRef]
- Gadge, M.; Chinchanikar, S. Characterization of pre-and/or post-treated PVD-AlTiN coating: Nanohardness, modulus of indentation and percent elastic portion of the nanoindentation. Mater. Today Proc. 2021, 46, 8386–8392. [Google Scholar] [CrossRef]
- Fei, G.; Han, Z.; Zhen, Z. Characterization of Solid Solution Strengthening Behavior of Magnesium Alloy Utilizing Nanoindentation. J. Chongqing Univ. Technol. (Nat. Sci.) 2020, 34, 141–146. [Google Scholar]
- Hernández, S.G.; García, V.C.; Luna, E.L.; Vidal, M.A. Elastic modulus and hardness of cubic GaN grown by molecular beam epitaxy obtained by nanoindentation. Thin Solid Films 2020, 699, 137915. [Google Scholar] [CrossRef]
- Hua, W.; Wu, X.; Shen, D.; Lu, H.; Polak, M. Nanohardness and elastic modulus at the interface of TiCx/Ni3Al composites determined by the nanoindentation technique. Appl. Surf. Sci. 2022, 189, 72–77. [Google Scholar] [CrossRef]
- Cannon, W.R.; Sherby, O.D. High temperature creep behavior of class I and class II solid solution alloys. Metall. Trans. 1970, 1, 1030–1032. [Google Scholar] [CrossRef]
- Günen, A.; Döleker, K.M.; Korkmaz, M.E.; Gök, M.S.; Erdogan, A. Characteristics, high temperature wear and oxidation behavior of boride layer grown on nimonic 80A Ni-based superalloy. Surf. Coat. Technol. 2021, 409, 126906. [Google Scholar] [CrossRef]
- Zhou, L.; Mehta, A.; Cho, K.; Sohn, Y. Composition-dependent interdiffusion coefficient, reduced elastic modulus and hardness in γ, γ′ and β-phases in the Ni-Al system. J. Alloys Compd 2017, 727, 153–162. [Google Scholar] [CrossRef]
- Zhu, W.; Wu, Q.; Yang, L.; Zhou, Y.C. In situ characterization of high temperature elastic modulus and fracture toughness in air plasma sprayed thermal barrier coatings under bending by using digital image correlation. Ceram. Int. 2020, 46, 18526–18533. [Google Scholar] [CrossRef]
- Hu, C.; Zhang, Z.; Chen, H.; He, J.; Guo, H. Reactive elements dependence of elastic properties and stacking fault energies of γ-Ni, γ′-Ni3Al and β-NiAl. J. Alloys Compd 2020, 843, 155799. [Google Scholar] [CrossRef]
Al | Cr | Ni | Mo | Ta | Re | Pt | |
---|---|---|---|---|---|---|---|
1 | 6.99 | 1.66 | 77.40 | 10.28 | 2.74 | 0.93 | / |
2 | 21.61 | 1.77 | 70.76 | 0.31 | 0.30 | / | 4.94 |
3 | 7.45 | 1.75 | 76.54 | 10.39 | 3.12 | 0.75 | / |
4 | 7.30 | 1.76 | 77.28 | 10.32 | 2.69 | 0.65 | / |
5 | 17.77 | 1.91 | 77.08 | 1.25 | 0.34 | 0.41 | 1.24 |
6 | 17.83 | 1.81 | 76.86 | 1.75 | / | / | 1.74 |
7 | 11.02 | 1.24 | 79.88 | 3.27 | 3.39 | / | 1.21 |
8 | 8.97 | 1.75 | 73.19 | 10.83 | 3.15 | 0.41 | 1.69 |
9 | 11.44 | 1.40 | 79.93 | 3.03 | / | 0.38 | 3.82 |
10 | 4.59 | 2.25 | 75.71 | 13.28 | 2.07 | 2.10 | / |
11 | 4.64 | 2.39 | 75.50 | 13.58 | 1.90 | 2.00 | / |
12 | 4.56 | 2.24 | 74.76 | 13.72 | 1.63 | 2.86 | / |
13 | 8.13 | 0.69 | 79.31 | 6.05 | 4.66 | 1.25 | / |
14 | 7.29 | 1.52 | 76.76 | 10.22 | 2.85 | 1.37 | |
TCP | 1.46 | 2.66 | 30.07 | 39.92 | / | 25.85 | / |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Ye, Y.; Yin, B.; Deng, C.; Liu, M.; Wu, C. Microstructure and Nanoindentation Evolution of (Ni,Pt)Al Coating on IC21 Substrate at 1100 °C. Coatings 2022, 12, 796. https://doi.org/10.3390/coatings12060796
Liu Y, Ye Y, Yin B, Deng C, Liu M, Wu C. Microstructure and Nanoindentation Evolution of (Ni,Pt)Al Coating on IC21 Substrate at 1100 °C. Coatings. 2022; 12(6):796. https://doi.org/10.3390/coatings12060796
Chicago/Turabian StyleLiu, Yingkun, Yun Ye, Bin Yin, Chunming Deng, Min Liu, and Chaoqun Wu. 2022. "Microstructure and Nanoindentation Evolution of (Ni,Pt)Al Coating on IC21 Substrate at 1100 °C" Coatings 12, no. 6: 796. https://doi.org/10.3390/coatings12060796
APA StyleLiu, Y., Ye, Y., Yin, B., Deng, C., Liu, M., & Wu, C. (2022). Microstructure and Nanoindentation Evolution of (Ni,Pt)Al Coating on IC21 Substrate at 1100 °C. Coatings, 12(6), 796. https://doi.org/10.3390/coatings12060796