Improvement of Structures and Properties of Al2O3 Coating Prepared by Cathode Plasma Electrolytic Deposition by Incorporating SiC Nanoparticles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Coating Preparation
2.2. Microstructural Characterization
2.3. Electrochemical Corrosion Test
2.4. Tribological Test
3. Results and Discussion
3.1. Phase Component and Microstructure of CPED Coating
3.2. Electrochemical Corrosion Behavior of CPED Coatings
3.3. Tribological Performance of CPED Coating
3.4. Mechanism Analysis of SiC Nanoparticles in CPED Process
4. Conclusions
- (1)
- The main phase of the coatings changes from α-Al2O3 to γ-Al2O3 when SiC nanoparticles are incorporated into the Al2O3 coatings. Compared with the Al2O3 coating, Al2O3–SiC composite coatings have a more uniform surface, lower surface roughness and more compact structure.
- (2)
- The introduction of SiC nanoparticles can effectively weaken the electrical breakdown of the CPED process. The corrosion resistance and wear resistance of Al2O3–SiC composite coatings are significantly improved compared with the Al2O3 coating. When the addition of SiC nanoparticles reaches 15 g/L, the corrosion current density and polarization resistance of the coating decreases by an order of magnitude, and the coating exhibits maximum impedance. Compared with the Al2O3 coating, its wear loss decreases by 45%. The wear mechanism of both the Al2O3 coating and the Al2O3–SiC composite coating is abrasive wear.
- (3)
- When the concentration of SiC nanoparticles in the electrolyte is too high, reaching 20 g/L, submicron-scale particles accumulate on the surface of the coatings, which degrades the microstructure and properties of the coatings.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yerokhin, A.L.; Nie, X.; Leyland, A.; Matthews, A.; Dowey, S.J. Plasma electrolysis for surface engineering. Surf. Coat. Technol. 1999, 122, 73–93. [Google Scholar] [CrossRef]
- Li, M.; Wang, D.; Xue, J.; Jia, R. Direct preparation of Y3Al5O12 hollow microspheres using cathode plasma electrolytic deposition. Ceram. Int. 2019, 45, 24919–24922. [Google Scholar] [CrossRef]
- Gu, W.-C.; Lv, G.-H.; Chen, H.; Chen, G.-L.; Feng, W.; Zhang, G.-L.; Yang, S.-Z. Preparation of ceramic coatings on inner surface of steel tubes using a combined technique of hot-dipping and plasma electrolytic oxidation. J. Alloys Compd. 2007, 430, 308–312. [Google Scholar] [CrossRef]
- Lin, A.-D.; Kung, C.-L.; Cao, Y.-Q.; Hsu, C.-M.; Chen, C.-Y. Stainless steel surface coating with nanocrystalline Ag film by plasma electrolysis technology. Coatings 2018, 8, 222. [Google Scholar] [CrossRef] [Green Version]
- Clyne, T.W.; Troughton, S.C. A review of recent work on discharge characteristics during plasma electrolytic oxidation of various metals. Int. Mater. Rev. 2018, 64, 127–162. [Google Scholar] [CrossRef] [Green Version]
- Narayanan, T.S.N.S.; Park, I.S.; Lee, M.H. Strategies to improve the corrosion resistance of microarc oxidation (MAO) coated magnesium alloys for degradable implants: Prospects and challenges. Prog. Mater. Sci. 2014, 60, 1–71. [Google Scholar] [CrossRef]
- Zhao, C.; Sun, J.Y.; Nie, X.Y.; Tjong, J.; Matthews, D.T.A. Anodic plasma electrolytic deposition of composite coating on ferrous alloys with low thermal conductivity and high adhesion strength. Surf. Coat. Technol. 2020, 398, 126081. [Google Scholar] [CrossRef]
- Rogov, A.B.; Huang, Y.; Shore, D.; Matthews, A.; Yerokhin, A. Toward rational design of ceramic coatings generated on valve metals by plasma electrolytic oxidation: The role of cathodic polarisation. Ceram. Int. 2021, 47, 34137–34158. [Google Scholar] [CrossRef]
- Stojadinovi, S.; Vasili, R.; Peri, M. Investigation of plasma electrolytic oxidation on valve metals by means of molecular spectroscopy—A review. RSC Adv. 2014, 4, 25759–25789. [Google Scholar] [CrossRef]
- Lin, A.-D.; Kung, C.-L.; Hsieh, W.-C.; Hsu, C.-M.; Chen, C.-Y. Study on cleaning the surface of stainless steel 316 using plasma electrolysis technology. Appl. Sci. 2018, 8, 1060. [Google Scholar] [CrossRef] [Green Version]
- Belkin, P.; Yerokhin, A.; Kusmanov, S. Plasma electrolytic saturation of steels with nitrogen and carbon. Surf. Coat. Technol. 2016, 307, 1194–1218. [Google Scholar] [CrossRef]
- Aliofkhazraei, M.; Aghdam, A.S.R.; Gupta, P. Nano-fabrication by cathodic plasma electrolysis. Crit. Rev. Solid State Mater. Sci. 2011, 36, 174–190. [Google Scholar] [CrossRef]
- Bahadori, E.; Javadpour, S.; Shariat, M.; Mahzoon, F. Preparation and properties of ceramic Al2O3 coating as TBCs on MCrAly layer applied on Inconel alloy by cathodic plasma electrolytic deposition. Surf. Coat. Technol. 2011, 228, S611–S614. [Google Scholar] [CrossRef]
- Zhang, S.; Zhao, C.; Zhang, J.; Lian, Y.; He, Y. C-Al2O3 coatings prepared by cathode plasma electrolytic deposition on TC4 substrate for better high temperature oxidation resistance. Surf. Coat. Technol. 2021, 405, 126585. [Google Scholar] [CrossRef]
- Wang, X.; Liu, F.; Song, Y.; Liu, Z.; Qin, D. Structure and properties of Al2O3 coatings formed on NiTi alloy by cathodic plasma electrolytic deposition. Surf. Coat. Technol. 2016, 285, 128–133. [Google Scholar] [CrossRef]
- Li, M.; Wang, D.; Xue, J.; Jia, R. Preparation of Pd-doped Y3Al5O12 thermal barrier coatings using cathode plasma electrolytic deposition. Ceram. Int. 2020, 46, 7019–7024. [Google Scholar] [CrossRef]
- Ji, R.; Peng, G.; Zhang, S.; Li, Z.; Li, J.; Fang, T.; Zhang, Z.; Wang, Y.; He, Y.; Wu, J. The fabrication of a CeO2 coating via cathode plasma electrolytic deposition for the corrosion resistance of AZ31 magnesium alloy. Ceram. Int. 2018, 44, 19885–19891. [Google Scholar] [CrossRef]
- Wang, Y.; Cao, X.Q.; Zhang, Z.; Huang, K.; Peng, G.C.; Fang, T.; He, Y.D.; Wu, J.S. Formation and wear performance of dia-mond-like carbon films on 316L stainless steel prepared by cathodic plasma electrolytic deposition. Diam. Relat. Mat. 2019, 95, 135–140. [Google Scholar] [CrossRef]
- Wang, P.; He, Y.; Zhang, J. Al2O3–ZrO2–Pt composite coatings prepared by cathode plasma electrolytic deposition on the TiAl alloy. Surf. Coat. Technol. 2015, 283, 37–43. [Google Scholar] [CrossRef]
- Wang, H.R.; Sun, T.; Chang, L.M.; Liu, F.; Liu, B.; Zhao, C.M.; Xue, X.X.; Xiong, X.B. Preparation of Ca doping ZrO2 coating on NiTi shape memory alloy by cathodic plasma electrolytic deposition and its structure, in-vitro bioactivity and biocompati-bility analysis. Surf. Coat. Technol. 2017, 325, 136–144. [Google Scholar] [CrossRef]
- Wang, S.Q.; Xie, F.Q.; Wu, X.Q.; Ma, Y.; Du, H.X.; Wu, G. Cathodic plasma electrolytic deposition of ZrO2/YSZ doped Al2O3 ceramic coating on TiAl alloy. Ceram. Int. 2019, 45, 18899–18907. [Google Scholar]
- Liu, Z.; Sun, Q.; Song, Y.; Wang, H.; Chen, X.; Wang, X.; Jiang, Z. Preparation of Mn doped Al2O3 heat-dissipating coatings on titanium alloy by cathodic plasma electrolytic deposition. J. Vac. 2019, 159, 228–234. [Google Scholar] [CrossRef]
- Wang, P.; He, Y.-D.; Deng, S.; Zhang, J. Porous α-Al2O3 thermal barrier coatings with dispersed Pt particles prepared by cathode plasma electrolytic deposition. Int. J. Miner. Met. Mater. 2016, 23, 92–101. [Google Scholar] [CrossRef]
- Wang, S.Q.; Xie, F.; Wu, X.Q.; Chen, L.Y. CeO2 doped Al2O3 composite ceramic coatings fabricated on γ–TiAl alloys via ca-thodic plasma electrolytic deposition. J. Alloys Compd. 2019, 788, 632–638. [Google Scholar] [CrossRef]
- Liu, P.; Pan, X.; Yang, W.H.; Cai, K.Y.; Chen, Y.S. Al2O3–ZrO2 ceramic coatings fabricated on WE43 magnesium alloy by ca-thodic plasma electrolytic deposition. Mater. Lett. 2012, 70, 16–18. [Google Scholar] [CrossRef]
- Liu, C.; Zhang, S.; Ji, R.; Wang, P.; Zhang, J.; Tian, Y.; Meng, Y.; He, Y. Cathode plasma electrolytic deposition of Al2O3 coatings doped with SiC particles. Ceram. Int. 2018, 45, 4747–4755. [Google Scholar] [CrossRef]
- Burduhos-Nergis, D.-P.; Vizureanu, P.; Sandu, A.V.; Bejinariu, C. Phosphate surface treatment for improving the corrosion resistance of the C45 carbon steel used in carabiners manufacturing. Materials 2020, 13, 3410. [Google Scholar] [CrossRef]
- Dunleavy, C.; Curran, J.; Clyne, T. Time dependent statistics of plasma discharge parameters during bulk AC plasma electrolytic oxidation of aluminium. Appl. Surf. Sci. 2013, 268, 397–409. [Google Scholar] [CrossRef]
- Wang, X.; Lee, G.; Atkinson, A. Investigation of TBCs on turbine blades by photoluminescence piezospectroscopy. Acta Mater. 2009, 57, 182–195. [Google Scholar] [CrossRef]
- Li, D.; Zhu, H.L.; Chen, S.O.; Jing, Y.L.; Shao, W.Q.; Luan, W.N.; Zhang, Y.C. Infrared spectral studies on relationship between phase transition and grain size of nanometre size γ-Al2O3 powder. Mater. Technol. 2009, 22, 91–94. [Google Scholar] [CrossRef]
- Karbovnyk, I.; Savchyn, P.; Huczko, A.; Guidi, M.C.; Mirri, C.; Popov, A.I. FTIR studies of silicon carbide 1D-nanostructures. Mater. Sci. Forum 2015, 821–823, 261–264. [Google Scholar] [CrossRef]
- Wang, Y.; Jiang, Z.; Liu, X.; Yao, Z. Influence of treating frequency on microstructure and properties of Al2O3 coating on 304 stainless steel by cathodic plasma electrolytic deposition. Appl. Surf. Sci. 2009, 255, 8836–8840. [Google Scholar] [CrossRef]
- Ma, L.; Huang, J.; Fan, X.; Li, J.; Zhu, H.; Xiong, D. Properties of thick ceramic composite coatings synthesized on an aluminium alloy by cathodic plasma electrolytic deposition. Surf. Coat. Technol. 2018, 356, 80–88. [Google Scholar] [CrossRef]
- Huang, J.W.; Zhu, J.Y.; Fan, X.M.; Xiong, D.S.; Li, J.L. Preparation of MoS2–Ti(C, N)–TiO2 coating by cathodic plasma electrolytic deposition and its tribological properties. Surf. Coat. Technol. 2018, 347, 76–83. [Google Scholar] [CrossRef]
- Wang, P.; Ma, Q.; Yuwen, Q.; Li, J. The differences in the formation mechanism of PEO and CPED composited ceramic coatings on Al-12Si alloy. J. Alloys Compd. 2019, 788, 61–66. [Google Scholar] [CrossRef]
- Wang, S.; Xie, F.; Wu, X. Mechanism of Al2O3 coating by cathodic plasma electrolytic deposition on TiAl alloy in Al(NO3)3 ethanol-water electrolytes. Mater. Chem. Phys. 2017, 202, 114–119. [Google Scholar] [CrossRef]
- Gupta, P.; Tenhundfeld, G.; Daigle, E.; Ryabkov, D. Electrolytic plasma technology: Science and engineering—An overview. Surf. Coat. Technol. 2007, 201, 8746–8760. [Google Scholar] [CrossRef]
- Paulmier, T.; Bell, J.; Fredericks, P. Development of a novel cathodic plasma/electrolytic deposition technique: Part 2: Physico-chemical analysis of the plasma discharge. Surf. Coat. Technol. 2007, 201, 8771–8781. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Jiang, Z.P.; Hao, G.J.; Liang, Y.F.; Ding, X.F.; Lin, J.P. Ni-doped Al2O3 coatings prepared by cathode plasma electroly-sis deposition on Ti-45Al-8.5 Nb alloys. Appl. Surf. Sci. 2018, 455, 144–152. [Google Scholar] [CrossRef]
- Wang, P.; Deng, S.; He, Y.; Liu, C.; Zhang, J. Influence of polyethylene glycol on cathode plasma electrolytic depositing Al2O3 anti-oxidation coatings. Ceram. Int. 2016, 42, 8229–8233. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, J.; Ji, R.; Lian, Y.; He, Y. Structure analysis and formation mechanism of Ce doped Al2O3 coatings prepared by cathode plasma electrolytic deposition. Ceram. Int. 2018, 44, 14465–14470. [Google Scholar] [CrossRef]
- Zhang, S.G.; Zhang, J.; Ji, R.N.; Lian, Y.; He, Y.D. The effect of electric conductivity on the structure of ceramic coatings pre-pared by cathode plasma electrolytic deposition. Mater. Chem. Phys. 2019, 224, 36–39. [Google Scholar] [CrossRef]
- Ikonopisov, S. Theory of electrical breakdown during formation of barrier anodic films. Electrochim. Acta 1977, 22, 1077–1082. [Google Scholar] [CrossRef]
Element | C | Mn | P | S | Si | Ni | Cr | Mo | N | Fe |
---|---|---|---|---|---|---|---|---|---|---|
Content | ≤0.03 | ≤2.00 | ≤0.035 | ≤0.02 | ≤0.75 | 10~14 | 16~18 | 2~3 | ≤0.10 | Balance |
Sample Code | Essential Component | Added Ingredients |
---|---|---|
S0 | 1 mol/L Al(NO3)3 anhydrous ethanol solution | 0 g/L SiC |
S5 | 5 g/L SiC | |
S10 | 10 g/L SiC | |
S15 | 15 g/L SiC | |
S20 | 20 g/L SiC |
Sample Code | Ecorr (V) | iorr (A/cm2) | Rp (Ω·cm2) | Vcorr (µm/year) |
---|---|---|---|---|
S0 | −0.165 | 1.716 × 10−6 | 22,713.0 | 20.89 |
S5 | −0.127 | 1.702 × 10−6 | 19,446.4 | 20.72 |
S10 | −0.078 | 1.400 × 10−6 | 24,397.2 | 17.05 |
S15 | −0.039 | 1.118 × 10−7 | 139,600.9 | 1.36 |
S20 | −0.035 | 4.968 × 10−7 | 43,071.0 | 6.05 |
Sample Code | Rs (Ω·cm2) | Rc (Ω·cm2) |
---|---|---|
S0 | 59.16 | 3534 |
S5 | 48.25 | 9813 |
S10 | 222.2 | 13,485 |
S15 | 184.9 | 35,489 |
S20 | 73.53 | 18,342 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Li, Z.; Zhou, R.; Wang, B.; Wang, Y.; Li, H.; He, T.; Ma, Y.; Ge, T.; Fan, W.; et al. Improvement of Structures and Properties of Al2O3 Coating Prepared by Cathode Plasma Electrolytic Deposition by Incorporating SiC Nanoparticles. Coatings 2022, 12, 580. https://doi.org/10.3390/coatings12050580
Li X, Li Z, Zhou R, Wang B, Wang Y, Li H, He T, Ma Y, Ge T, Fan W, et al. Improvement of Structures and Properties of Al2O3 Coating Prepared by Cathode Plasma Electrolytic Deposition by Incorporating SiC Nanoparticles. Coatings. 2022; 12(5):580. https://doi.org/10.3390/coatings12050580
Chicago/Turabian StyleLi, Xianjia, Zhi Li, Rui Zhou, Bin Wang, Yu Wang, Husheng Li, Tao He, Yushan Ma, Tao Ge, Wei Fan, and et al. 2022. "Improvement of Structures and Properties of Al2O3 Coating Prepared by Cathode Plasma Electrolytic Deposition by Incorporating SiC Nanoparticles" Coatings 12, no. 5: 580. https://doi.org/10.3390/coatings12050580
APA StyleLi, X., Li, Z., Zhou, R., Wang, B., Wang, Y., Li, H., He, T., Ma, Y., Ge, T., Fan, W., & Bai, Y. (2022). Improvement of Structures and Properties of Al2O3 Coating Prepared by Cathode Plasma Electrolytic Deposition by Incorporating SiC Nanoparticles. Coatings, 12(5), 580. https://doi.org/10.3390/coatings12050580