Effect of β-Estradiol on Mono- and Mixed-Species Biofilms of Human Commensal Bacteria Lactobacillus paracasei AK508 and Micrococcus luteus C01 on Different Model Surfaces
Abstract
:1. Introduction
2. Materials and Methods
2.1. Strains and Growth Conditions
2.2. Hormone Storage and Testing
2.3. Biofilms on Polytetrafluoroethylene Cubes
2.4. Growth Kinetics of Biofilms and Planktonic Cultures
2.5. Confocal Laser Scanning Microscopy
2.6. Fluorescent In Situ Hybridization
2.7. Biofilms on Glass Microfiber Filters
2.8. CFU Counting and Cell Aggregation Analysis
2.9. Test of L. paracasei Antibacterial Properties
2.10. Statistics
3. Results
3.1. Biofilms on PTFE Cubes
3.2. Growth Kinetics
3.3. Confocal Microscopy of Mono- and Mixed-Species Biofilms
3.4. Biofilms on the Glass Microfiber Filters
3.5. Biofilms on the Glass Microfiber Filters
3.6. Analysis of Cell Aggregation in Biofilm
3.7. Antibacterial Properties Test
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gannesen, A.V.; Schelkunov, M.I.; Geras’kina, O.V.; Makarova, N.E.; Sukhacheva, M.V.; Danilova, N.D.; Ovcharova, M.A.; Mart’yanov, S.V.; Pankratov, T.A.; Muzychenko, D.S.; et al. Epinephrine affects gene expression levels and has a complex effect on biofilm formation in Micrococcus luteus strain C01 isolated from human skin. Biofilm, 2021; in press. [Google Scholar]
- Racine, P.J.; Janvier, X.; Clabaut, M.; Catovic, C.; Souak, D.; Boukerb, A.M.; Groboillot, A.; Konto-Ghiorghi, Y.; Duclairoir-Poc, C.; Lesouhaitier, O.; et al. Dialog between skin and its microbiota: Emergence of “Cutaneous Bacterial Endocrinology”. Exp. Dermatol. 2020, 29, 790–800. [Google Scholar] [PubMed]
- Donova, M.V.; Egorova, O. Microbial steroid transformations: Current state and prospects. Appl. Microbiol. Biotechnol. 2012, 94, 1423–1447. [Google Scholar] [CrossRef] [PubMed]
- Insenser, M.; Murri, M.; Del Campo, R.; Martinez-Garcia, M.A.; Fernandez-Duran, E.; Escobar-Morreale, H.F. Gut mi-crobiota and the polycystic ovary syndrome: Influence of sex, sex hormones, and obesity. J. Clin. Endocrinol. Metab. 2018, 103, 2552–2562. [Google Scholar]
- Pigrau, M.; Rodiño-Janeiro, B.K.; Bedmar, M.T.C.; Lobo, B.; Vicario, M.; Santos, J.; Cotoner, C.A. The joint power of sex and stress to modulate brain-gut-microbiota axis and intestinal barrier homeostasis: Implications for irritable bowel syndrome. Neurogastroenterol. Motil. 2015, 28, 463–486. [Google Scholar] [CrossRef]
- Haro, C.; Rangel-Zuñiga, O.A.; Alcala-Diaz, J.F.; Delgado, F.G.; Pérez-Martínez, P.; Delgado-Lista, J.; Quintana-Navarro, G.M.; Landa, B.B.; Navas-Cortes, J.; Tena-Sempere, M.; et al. Intestinal Microbiota Is Influenced by Gender and Body Mass Index. PLoS ONE 2016, 11, e0154090. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Sun, Z.; Jiang, S.; Bai, X.; Ma, C.; Peng, Q.; Zhang, H. Probiotic Bifidobacterium lactis V9 regulates the secre-tion of sex hormones in polycystic ovary syndrome patients through the gut-brain axis. Msystems 2019, 4, e00017-19. [Google Scholar]
- Beury-Cirou, A.; Tannières, M.; Minard, C.; Soulère, L.; Rasamiravaka, T.; Dodd, R.H.; Queneau, Y.; Dessaux, Y.; Guillou, C.; Vandeputte, O.M.; et al. At a Supra-Physiological Concentration, Human Sexual Hormones Act as Quorum-Sensing Inhibitors. PLoS ONE 2013, 8, e83564. [Google Scholar] [CrossRef]
- Fteita, D.; Musrati, A.A.; Könönen, E.; Ma, X.; Gürsoy, M.; Peurla, M.; Söderling, E.; Sintim, H.O.; Gürsoy, U.K. Dipeptidyl peptidase IV and quorum sensing signaling in biofilm-related virulence of Prevotella aurantiaca. Anaerobe 2017, 48, 152–159. [Google Scholar]
- Zommiti, M.; Feuilloley, M.G.J.; Connil, N. Update of Probiotics in Human World: A Nonstop Source of Benefactions till the End of Time. Microorganisms 2020, 8, 1907. [Google Scholar] [CrossRef]
- Cundell, A.M. Microbial Ecology of the Human Skin. Microb. Ecol. 2018, 76, 113–120. [Google Scholar] [PubMed]
- Egert, M.; Simmering, R. The Microbiota of the Human Skin. In Microbiota of the Human Body. Advances in Experimental Medicine and Biology; Schwiertz, A., Ed.; Springer: Cham, Switzerland, 2016; Volume 902, pp. 61–81. [Google Scholar]
- Cho, H.-W.; Eom, Y.-B. Forensic Analysis of Human Microbiome in Skin and Body Fluids Based on Geographic Location. Front. Cell. Infect. Microbiol. 2021, 11, 695191. [Google Scholar] [CrossRef] [PubMed]
- Bastianelli, C.; Farris, M.; Bianchi, P.; Benagiano, G. The effect of different contraceptive methods on the vaginal microbiome. Expert Rev. Clin. Pharmacol. 2021, 14, 1–16. [Google Scholar]
- Zárate, G.; Santos, V.; Nader-Macias, M.E. Protective effect of vaginal Lactobacillus paracasei CRL 1289 against urogeni-tal infection produced by Staphylococcus aureus in a mouse animal model. Infect. Dis. Obstet. Gynecol. 2007, 2007, 048358. [Google Scholar]
- Balzaretti, S.; Taverniti, V.; Rondini, G.; Marcolegio, G.; Minuzzo, M.; Remagni, M.C.; Fiore, W.; Arioli, S.; Guglielmetti, S. The vaginal isolate Lactobacillus paracasei LPC-S01 (DSM 26760) is suitable for oral administration. Front. Microbiol. 2015, 6, 952. [Google Scholar] [CrossRef]
- Gueniche, A.; Benyacoub, J.; Philippe, D.; Bastien, P.; Kusy, N.; Breton, L.; Blum, S.; Castiel-Higounenc, I. Lactobacillus paracasei CNCM I-2116 (ST11) inhibits substance P-induced skin inflammation and accelerates skin barrier function recovery in vitro. Eur. J. Dermatol. 2010, 20, 731–737. [Google Scholar]
- Jeong, J.H.; Lee, C.Y.; Chung, D.K. Probiotic lactic acid bacteria and skin health. Crit. Rev. Food Sci. Nutr. 2016, 56, 2331–2337. [Google Scholar]
- Salem, I.; Ramser, A.; Isham, N.; Ghannoum, M.A. The Gut Microbiome as a Major Regulator of the Gut-Skin Axis. Front. Microbiol. 2018, 9, 1459. [Google Scholar] [CrossRef] [Green Version]
- Lange-Asschenfeldt, B.; Marenbach, D.; Lang, C.; Patzelt, A.; Ulrich, M.; Maltusch, A.; Terhorst, D.; Stockfleth, E.; Sterry, W.; Lademann, J. Distribution of Bacteria in the Epidermal Layers and Hair Follicles of the Human Skin. Ski. Pharmacol. Physiol. 2011, 24, 305–311. [Google Scholar] [CrossRef]
- Vongsa, R.; Hoffman, D.; Shepard, K.; Koenig, D. Comparative study of vulva and abdominal skin microbiota of healthy females with high and average BMI. BMC Microbiol. 2019, 19, 1–9. [Google Scholar] [CrossRef]
- Carmina, E.; Lobo, R.A. Evaluation of hormonal status. In Yen and Jaffe’s Reproductive Endocrinology: Physiology, Pathophysiology and Clinical Management, 6th ed.; Strauss, J.F., III, Barbieri, R.L., Eds.; Elsevier: Saunders, PA, USA, 2009; pp. 801–823. [Google Scholar]
- Santen, R.J.; Mirkin, S.; Bernick, B.; Constantine, G.D. Systemic estradiol levels with low-dose vaginal estrogens. Menopause 2019, 27, 361–370. [Google Scholar] [CrossRef]
- Zhurina, M.V.; Gannesen, A.V.; Mart’Yanov, S.V.; Teteneva, N.A.; Shtratnikova, V.Y.; Plakunov, V.K. Niclosamide as a promising antibiofilm agent. Microbiology 2017, 86, 455–462. [Google Scholar] [CrossRef]
- Danilova, N.D.; Solovyeva, T.V.; Mart’Yanov, S.V.; Zhurina, M.V.; Gannesen, A.V. Stimulatory Effect of Epinephrine on Biofilms of Micrococcus luteus C01. Microbiology 2020, 89, 493–497. [Google Scholar] [CrossRef]
- Lynch, C. Vaginal Estrogen Therapy for the Treatment of Atrophic Vaginitis. J. Women’s Health 2009, 18, 1595–1606. [Google Scholar] [CrossRef] [Green Version]
- Mart’Yanov, S.; Botchkova, E.; Plakunov, V.; Gannesen, A. The Impact of Norepinephrine on Mono-Species and Dual-Species Staphylococcal Biofilms. Microorganisms 2021, 9, 820. [Google Scholar] [CrossRef]
- Plakunov, V.K.; Mart’yanov, S.V.; Teteneva, N.A.; Zhurina, M.V. A universal method for quantitative characteriza-tion of growth and metabolic activity of microbial biofilms in static models. Microbiology 2016, 85, 509–513. [Google Scholar]
- Ovcharova, M.; Geraskina, O.; Danilova, N.; Botchkova, E.; Martyanov, S.; Feofanov, A.; Plakunov, V.; Gannesen, A. Atrial Natriuretic Peptide Affects Skin Commensal Staphylococcus epidermidis and Cutibacterium acnes Dual-Species Biofilms. Microorganisms 2021, 9, 552. [Google Scholar] [CrossRef]
- Lebeer, S.; Verhoeven, T.L.A.; Claes, I.J.J.; De Hertogh, G.; Vermeire, S.; Buyse, J.; Van Immerseel, F.; Vanderleyden, J.; De Keersmaecker, S.C.J. FISH analysis of Lactobacillus biofilms in the gastrointestinal tract of different hosts. Lett. Appl. Microbiol. 2011, 52, 220–226. [Google Scholar] [CrossRef]
- Gannesen, A.V.; Borrel, V.; Lefeuvre, L.; Netrusov, A.I.; Plakunov, V.K.; Feuilloley, M.G.J. Effect of two cosmetic compounds on the growth, biofilm formation activity, and surface properties of acneic strains of Cutibacterium acnes and Staphylococcus aureus. MicrobiologyOpen 2019, 8, e00659. [Google Scholar] [CrossRef]
- Dąbrowska, A.K.; Rotaru, G.-M.; Derler, S.; Spano, F.; Camenzind, M.; Annaheim, S.; Stämpfli, R.; Schmid, M.; Rossi, R.M. Materials used to simulate physical properties of human skin. Ski. Res. Technol. 2016, 22, 3–14. [Google Scholar] [CrossRef]
- Brown, T.M.; Krishnamurthy, K. Histology, Dermis. StatPearls Publishing, Treasure Island (FL). 2020. Available online: https://www.ncbi.nlm.nih.gov/books/NBK535346/ (accessed on 11 February 2022).
- Elleuch, L.; Shaaban, M.; Smaoui, S.; Mellouli, L.; Karray-Rebai, I.; Fourati-Ben Fguira, L.; Shaaban, K.A.; Laatsch, H. Bioac-tive secondary metabolites from a new terrestrial Streptomyces sp. TN262. Appl. Biochem. Biotechnol. 2010, 162, 579–593. [Google Scholar]
- Clabaut, M.; Suet, A.; Racine, P.J.; Tahrioui, A.; Verdon, J.; Barreau, M.; Maillot, O.; Le Tirant, A.; Karsybayeva, M.; Kremser, C.; et al. Effect of 17β-estradiol on a hu-man vaginal Lactobacillus crispatus strain. Sci. Rep. 2021, 11, 1–16. [Google Scholar]
- Clabaut, M.; Boukerb, A.M.; Ben Mlouka, A.; Suet, A.; Tahrioui, A.; Verdon, J.; Barreau, M.; Maillot, O.; Le Tirant, A.; Karsybayeva, M.; et al. Variability of the response of human vaginal Lactobacillus crispatus to 17β-estradiol. Sci. Rep. 2021, 11, 11533. [Google Scholar] [CrossRef] [PubMed]
- Plakunov, V.K.; Nikolaev, Y.A.; Gannesen, A.V.; Chemaeva, D.S.; Zhurina, M.V. A New Approach to Detection of the Protective Effect of Escherichia coli on Gram-Positive Bacteria in Binary Biofilms in the Presence of Antibiotics. Microbiology 2019, 88, 275–281. [Google Scholar] [CrossRef]
- Mukamolova, G.V.; Murzin, A.G.; Salina, E.G.; Demina, G.R.; Kell, D.B.; Kaprelyants, A.S.; Young, M. Muralytic activity of Micrococcus luteus Rpf and its relationship to physiological activity in promoting bacterial growth and resuscitation. Mol. Microbiol. 2006, 59, 84–98. [Google Scholar]
- Mukamolova, G.V.; Turapov, O.A.; Kazarian, K.; Telkov, M.; Kaprelyants, A.S.; Kell, D.B.; Young, M. The rpf gene of Micrococcus luteus encodes an essential secreted growth factor. Mol. Microbiol. 2002, 46, 611–621. [Google Scholar] [CrossRef] [Green Version]
- Vidaillac, C.; Yong, V.F.L.; Aschtgen, M.S.; Qu, J.; Yang, S.; Xu, G.; Seng, Z.J.; Brown, A.C.; Ali, M.K.; Jaggi, T.K.; et al. Sex Steroids induce membrane stress responses and virulence properties in Pseudomonas aeruginosa. mBio 2020, 11, e01774-20, Erratum in mBio, 3 November 2020. [Google Scholar]
- Plotkin, B.J.; Konakieva, M.I. Attenuation of antimicrobial activity by the human steroid hormones. Steroids 2017, 128, 120–127. [Google Scholar] [CrossRef]
- Chatterjee, I.; Somerville, G.A.; Heilmann, C.; Sahl, H.-G.; Maurer, H.H.; Herrmann, M. Very Low Ethanol Concentrations Affect the Viability and Growth Recovery in Post-Stationary-Phase Staphylococcus aureus Populations. Appl. Environ. Microbiol. 2006, 72, 2627–2636. [Google Scholar] [CrossRef] [Green Version]
- Stiles, M.E.; Holzapfel, W.H. Lactic acid bacteria of foods and their current taxonomy. Int. J. Food Microbiol. 1997, 36, 1–29. [Google Scholar] [CrossRef]
- Duar, R.M.; Lin, X.B.; Zheng, J.; Martino, M.E.; Grenier, T.; Pérez-Muñoz, M.E.; Leulier, F.; Gänzle, M.; Walter, J. Lifestyles in transition: Evolution and natural history of the genus Lactobacillus. FEMS Microbiol. Rev. 2017, 41, S27–S48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elshaghabee, F.; Ebockelmann, W.; Emeske, D.; Vrese, M.E.; Ewalte, H.-G.; Eschrezenmeir, J.; Heller, K.J. Ethanol Production by Selected Intestinal Microorganisms and Lactic Acid Bacteria Growing under Different Nutritional Conditions. Front. Microbiol. 2016, 7, 47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, K.; Ainala, S.K.; Park, S. Metabolic engineering of Lactobacillus reuteri DSM 20,016 for improved 1,3-propanediol production from glycerol. Bioresour. Technol. 2021, 338, 125590. [Google Scholar] [CrossRef] [PubMed]
- Burgain, A.; Tebbji, F.; Khemiri, I.; Sellam, A. Metabolic Reprogramming in the Opportunistic Yeast Candida albicans in Response to Hypoxia. mSphere 2020, 5, e00913-19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Kinetic Parameter | The Model without the Adhesion | The Model with the Adhesion | ||||||
---|---|---|---|---|---|---|---|---|
Control | Ethanol 0.6% | Estradiol 0.22 nM | Estradiol 22 nM | Control | Ethanol 0.6% | Estradiol 0.22 nM | Estradiol 22 nM | |
M. luteus monospecies | ||||||||
Maximal OD540 | 1.87 ± 0.05 | 1.86 ± 0.04 | 1.87 ± 0.03 | 1.78 ± 0.13 | 1.33 ± 0.04 | 1.36 ± 0.03 | 1.36 ± 0.06 | 1.2 ± 0.21 |
Specific growth rate, h−1 | 0.17 ± 0.05 | 0.18 ± 0.04 | 0.17 ± 0.05 | 0.18 ± 0.05 | 0.13 ± 0.01 | 0.15 ± 0.005 | 0.14 ± 0.02 | 0.144 ± 0.001 |
Generation time, h | 4.7 ± 1.2 | 4.3 ± 0.95 | 4.73 ± 1.2 | 4.45 ± 1.1 | 5.44 ± 0.42 | 4.56 ± 0.16 | 5.2 ± 0.6 | 4.81 ± 0.05 |
Linear portion, h | 1.75 ± 0.25 | 1.83 ± 0.36 | 1.75 ± 0.5 | 1.17 ± 0.08 | 1.17 ± 0.22 | 1.32 ± 0.3 | 2.1 ± 0.4 | 1.17 ±0.33 |
L. paracasei monospecies | ||||||||
Maximal OD540 | 0.79 ± 0.05 | 0.79 ± 0.08 | 0.73 ± 0.05 | 0.82 ± 0.06 | 0.71 ± 0.05 | 0.97 ± 0.1 | 0.83 ± 0.01 | 0.82 ± 0.1 |
Specific growth rate, h−1 | 0.13 ± 0.02 | 0.15 ± 0.03 | 0.13 ± 0.02 | 0.14 ± 0.02 | 0.1 ± 0.006 | 0.09 ± 0.006 | 0.1 ± 0.006 | 0.1 ± 0.01 |
Generation time, h | 5.68 ± 1.1 | 4.84 ± 1 | 5.54 ± 0.9 | 5.22 ± 0.8 | 7.31 ± 0.5 | 7.5 ± 0.58 | 7 ± 0.45 | 7 ± 0.59 |
Linear portion, h | 1.25 ± 0.14 | 1.17 ± 0.08 | 1 ± 0.05 | 1 ± 0.05 | 1.5 ± 0.25 | 1.5 ± 0.38 | 1.67 ± 0.08 | 1.67 ± 0.22 |
Mixed-species | ||||||||
Maximal OD540 | 1.37 ± 0.19 | 1.32 ± 0.15 | 1.31 ± 0.17 | 1.33 ± 0.12 | 1.15 ± 0.04 | 1.17 ± 0.07 | 1.17 ± 0.06 | 1 ± 0.09 |
Specific growth rate, h−1 | 0.16 ± 0.05 | 0.17 ± 0.04 | 0.16 ± 0.05 | 0.17 ± 0.04 | 0.12 ± 0.006 | 0.12 ± 0.008 | 0.12 ± 0.01 | 0.14 ± 0.01 |
Generation time, h | 5.02 ± 1.3 | 4.49 ± 0.9 | 4.88 ± 1.1 | 4.53 ± 1 | 5.86 ± 0.29 | 5.7 ± 0.35 | 5.95 | 4.81 ± 0.26 |
Linear portion, h | 2.58 ± 0.08 | 2 ± 0.29 | 2.17 ± 0.08 | 1.75 ± 0.01 | 2 ± 0.38 | 1.58 ± 0.22 | 2.67 ± 0.36 | 1.42 ± 0.3 |
Microorganisms | Parameters | Control | Ethanol 0.6% | Estradiol 0.22 nM | Estradiol 22 nM | |
---|---|---|---|---|---|---|
M. luteus monospecies | Biomass density, µm3/µm2 | Meaning | 7.8 | 7.1 | 21.2 | 10.8 |
SEM | 1.7 | 2.2 | 6.1 | 3.7 | ||
Average thickness, µm3/µm2 | Meaning | 11.1 | 10.0 | 23.9 | 13.7 | |
SEM | 1.9 | 2.6 | 6.3 | 3.9 | ||
L. paracasei mono-species (green channel) | Biomass density, µm3/µm2 | Meaning | 2.3 | 3.1 | 2.1 | 1.8 |
SEM | 0.4 | 0.5 | 0.3 | 0.4 | ||
Average thickness, µm3/µm2 | Meaning | 4.4 | 5.9 | 4.9 | 4.5 | |
SEM | 0.6 | 0.9 | 0.6 | 0.9 | ||
L. paracasei monospecies (red channel) | Biomass density, µm3/µm2 | Meaning | 0.01 | 0.023 | 0.016 | 0.011 |
SEM | 0.002 | 0.008 | 0.009 | 0.002 | ||
Average thickness, µm3/µm2 | Meaning | N/A | N/A | N/A | N/A | |
SEM | N/A | N/A | N/A | N/A | ||
Mixed-species (green channel) | Biomass density, µm3/µm2 | Meaning | 7.5 | 5.1 | 5.0 | 7.9 |
SEM | 1.1 | 0.8 | 0.5 | 1.2 | ||
Average thickness, µm3/µm2 | Meaning | 10.0 | 7.5 | 7.7 | 10.4 | |
SEM | 0.9 | 0.9 | 0.5 | 1.1 | ||
Mixed-species (red channel) | Biomass density, µm3/µm2 | Meaning | 0.013 | 0.028 | 0.014 | 0.009 |
SEM | 0.006 | 0.016 | 0.009 | 0.003 | ||
Average thickness, µm3/µm2 | Meaning | N/A | N/A | N/A | N/A | |
SEM | N/A | N/A | N/A | N/A |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kiseleva, A.A.; Solovyeva, T.V.; Ovcharova, M.A.; Geras’kina, O.V.; Mart’yanov, S.V.; Cherdyntseva, T.A.; Danilova, N.D.; Zhurina, M.V.; Botchkova, E.A.; Feofanov, A.V.; et al. Effect of β-Estradiol on Mono- and Mixed-Species Biofilms of Human Commensal Bacteria Lactobacillus paracasei AK508 and Micrococcus luteus C01 on Different Model Surfaces. Coatings 2022, 12, 436. https://doi.org/10.3390/coatings12040436
Kiseleva AA, Solovyeva TV, Ovcharova MA, Geras’kina OV, Mart’yanov SV, Cherdyntseva TA, Danilova ND, Zhurina MV, Botchkova EA, Feofanov AV, et al. Effect of β-Estradiol on Mono- and Mixed-Species Biofilms of Human Commensal Bacteria Lactobacillus paracasei AK508 and Micrococcus luteus C01 on Different Model Surfaces. Coatings. 2022; 12(4):436. https://doi.org/10.3390/coatings12040436
Chicago/Turabian StyleKiseleva, Anastasia A., Tatiana V. Solovyeva, Maria A. Ovcharova, Olga V. Geras’kina, Sergey V. Mart’yanov, Tatiana A. Cherdyntseva, Natalya D. Danilova, Marina V. Zhurina, Ekaterina A. Botchkova, Alexey V. Feofanov, and et al. 2022. "Effect of β-Estradiol on Mono- and Mixed-Species Biofilms of Human Commensal Bacteria Lactobacillus paracasei AK508 and Micrococcus luteus C01 on Different Model Surfaces" Coatings 12, no. 4: 436. https://doi.org/10.3390/coatings12040436
APA StyleKiseleva, A. A., Solovyeva, T. V., Ovcharova, M. A., Geras’kina, O. V., Mart’yanov, S. V., Cherdyntseva, T. A., Danilova, N. D., Zhurina, M. V., Botchkova, E. A., Feofanov, A. V., Plakunov, V. K., & Gannesen, A. V. (2022). Effect of β-Estradiol on Mono- and Mixed-Species Biofilms of Human Commensal Bacteria Lactobacillus paracasei AK508 and Micrococcus luteus C01 on Different Model Surfaces. Coatings, 12(4), 436. https://doi.org/10.3390/coatings12040436