Critical Velocity Prediction and Characterization of Bonding Types of High-Velocity, Air-Fuel-Sprayed Titanium Coating on Aluminum Alloys
Abstract
:1. Introduction
2. Materials and Methods
2.1. Simulation Model and Settings
2.2. Experimental
3. Results and Discussion
3.1. Simulation Results and Discussion
3.1.1. Critical Velocity Prediction
3.1.2. Plastic Strain and Collision Temperature
3.1.3. Interactions among Particles
3.2. Microstructure and Bonding Type of the Coatings
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chak, V.; Chattopadhyay, H.; LDora, T. A review on fabrication methods, reinforcements and mechanical properties of aluminum matrix composites. J. Manuf. Processes 2020, 56, 1059–1074. [Google Scholar] [CrossRef]
- Samodurova, M.; Shaburova, N.; Samoilova, O.; Moghaddam, A.O.; Pashkeev, K.; Ul’yanitckiy, V.; Trofimov, E. Properties of WC–10%Co–4%Cr Detonation Spray Coating Deposited on the Al–4%Cu–1%Mg Alloy. Materials 2021, 14, 1206. [Google Scholar] [CrossRef] [PubMed]
- McCafferty, E. Introduction to Corrosion Science, 1st ed.; Springer: New York, NY, USA, 2009; pp. 56–62. [Google Scholar]
- Nosova, E.; Baliakin, A.; Galkina, N.; Alekseevet, V. Research of Titanium Covering Effect Received by Selective Laser Melting on Mechanical Properties of Aluminum Alloy Al-6Mg. Mater. Today Proc. 2019, 11, 370–374. [Google Scholar] [CrossRef]
- Wang, C.; Li, J.; Wang, T.; Chai, L.; Deng, C.; Wang, Y.; Huang, Y. Microstructure and properties of pure titanium coating on Ti-6Al-4V alloy by laser cladding. Surf. Coat. Technol. 2021, 416, 127–137. [Google Scholar] [CrossRef]
- da Silva, F.S.; Cinca, N.; Dosta, S.; Cano, I.G.; Guilemany, J.M.; Caires, C.S.A.; Lima, A.R.; Silva, C.M.; Oliveira, S.L.; Caires, A.R.L.; et al. Corrosion resistance and antibacterial properties of copper coating deposited by cold gas spray. Surf. Coat. Technol. 2019, 361, 292–301. [Google Scholar] [CrossRef]
- Li, W.; Cao, C.; Yin, S. Solid-state cold spraying of Ti and its alloys: A literature review. Prog. Mater. Sci. 2020, 110, 100633. [Google Scholar] [CrossRef]
- Hussain, T. Cold Spraying of Titanium: A Review of Bonding Mechanisms, Microstructure and Properties. Key Eng. Mater. 2012, 533, 53–90. [Google Scholar] [CrossRef]
- Hesamodin, J.; Jabbarzadeh, A. Molecular simulation of high-velocity deposition of titanium dioxide nanoparticles on titanium. Appl. Surf. Sci. 2021, 542, 148567–148577. [Google Scholar] [CrossRef]
- Wong, W.; Irissou, E.; Ryabinin, A.N.; Legoux, J.-G.; Yue, S. Influence of Helium and Nitrogen Gases on the Properties of Cold Gas Dynamic Sprayed Pure Titanium Coatings. J. Therm. Spray Technol. 2011, 20, 213–226. [Google Scholar] [CrossRef] [Green Version]
- Zhizhong, W.; Chao, H.; Huang, G.; Bin, H.; Bin, H. Cold spray micro-defects and post-treatment technologies: A review. Rapid Prototyp. J. 2019, 28, 330–357. [Google Scholar] [CrossRef]
- Luo, X.-T.; Wei, Y.-K.; Wang, Y.; Li, C.-J. Microstructure and mechanical property of Ti and Ti6Al4V prepared by an in-situ shot peening assisted cold spraying. Mater. Des. 2015, 85, 527–533. [Google Scholar] [CrossRef]
- Li, C.-J.; Li, W.-Y. Deposition characteristics of titanium coating in cold spraying. Surf. Coat. Technol. 2003, 167, 278–283. [Google Scholar] [CrossRef]
- Assadi, H.; Gärtner, F.; Stoltenhoff, T.; Kreye, H. Bonding mechanism in cold gas spraying. Acta Mater. 2003, 51, 4379–4394. [Google Scholar] [CrossRef]
- Chakravarthy, Y.; Bhandari, S.; Chaturvedi, V.; Pragatheeswaran, A.; Nagraj, A.; Thiyagarajan, T.K.; Ananthapadmanaban, P.V.; Das, A.K. Plasma spray deposition of yttrium oxide on graphite, coating characterization and interaction with molten uranium. J. Eur. Ceram. Soc. 2015, 35, 623–756. [Google Scholar] [CrossRef]
- Kang, C.W.; Ng, H.W.; Yu, S.C.M. Imaging Diagnostics Study on Obliquely Impacting Plasma-Sprayed Particles Near to the Substrate. J. Therm. Spray Technol. 2006, 15, 118–130. [Google Scholar] [CrossRef]
- Lemiale, V.; King, P.C.; Rudman, M.; Prakash, M.; Cleary, P.W.; Jahedi, M.Z.; Gulizia, S. Temperature and strain rate effects in cold spray investigated by smoothed particle hydrodynamics. Surf. Coat. Technol. 2014, 254, 121–130. [Google Scholar] [CrossRef]
- Ye, H.; Wang, J. Preparation of aluminum coating on Lexan by cold spray. Mater. Lett. 2014, 137, 21–24. [Google Scholar] [CrossRef]
- Klinkov, S.V.; Kosarev, V.F.; Rein, M. Cold spray deposition: Significance of particle impact phenomena. Aerosp. Sci. Technol. 2005, 9, 582–591. [Google Scholar] [CrossRef]
- Meng, F.; Yue, S.; Song, J. Quantitative prediction of critical velocity and deposition efficiency in cold-spray: A finite-element study. Scr. Mater. 2015, 107, 83–87. [Google Scholar] [CrossRef]
- Li, W.Y.; Zhang, D.D.; Huang, C.J.; Yin, S.; Yu, M.; Wang, F.F.; Liao, H.L. Modelling of Impact Behaviour of Cold Spray Particles: Review. Surf. Eng. 2014, 30, 299–308. [Google Scholar] [CrossRef]
- Ye, F.; Niu, A.; Guo, A.; Ding, K. Impact Behavior of WC-17Co Particle in HVOF Spraying. J. Tianjin Univ. 2016, 49, 882–887. [Google Scholar] [CrossRef]
- Yu, M.; Li, W.Y.; Wang, F.F.; Suo, X.K.; Liao, H.L. Effect of Particle and Substrate Preheating on Particle Deformation Behavior in Cold Spraying. Surf. Coat. Technol. 2013, 220, 174–178. [Google Scholar] [CrossRef]
- Li, W.Y.; Yang, K.; Yin, S.; Guo, X.P. Numerical Analysis of Cold Spray Particles Impacting Behavior by the Eulerian Method: A Review. J. Therm. Spray Technol. 2016, 25, 1441–1460. [Google Scholar] [CrossRef]
- Wang, Y.; Han, Y.; Lin, C.; Zheng, W.; Jiang, C.; Wei, A.; Liu, Y.; Zeng, Y.; Shi, Y. Effect of spraying power on the morphology of YSZ splat and micro-structure of thermal barrier coating. Ceram. Int. 2021, 47, 18956–18963. [Google Scholar] [CrossRef]
- Nastic, A.; Jodoin, B.; Poirier, D.; Legoux, J.-G. Particle temperature effect in cold spray: A study of soft particle deposition on hard substrate. Surf. Coat. Technol. 2021, 406, 126735. [Google Scholar] [CrossRef]
- Bolelli, G.; Cannillo, V.; Gadow, R.; Killinger, A.; Lusvarghi, L.; Rauch, J. Properties of High Velocity Suspension Flame Sprayed (HVSFS) TiO 2 coatings. Surf. Coat. Technol. 2009, 203, 1722–1732. [Google Scholar] [CrossRef]
- Semih, A.; Puyuan, W.; Tsai, J.-T.; Chandra, N.; Jun, C.; Byung-Guk, M. A study on droplets dispersion and deposition characteristics under supersonic spray flow for nanomaterial coating applications. Surf. Coat. Technol. 2021, 426, 127788. [Google Scholar] [CrossRef]
- Munagala, V.N.V.; Chakrabarty, R.; Song, J.; Chromik, R. Effect of metal powder properties on the deposition characteristics of cold-sprayed Ti6Al4V-TiC coatings: An experimental and finite element study. Surf. Interfaces 2021, 25, 58–61. [Google Scholar] [CrossRef]
- Chakrabarty, R.; Song, J. A modified Johnson-Cook material model with strain gradient plasticity consideration for numerical simulation of cold spray process. Surf. Coat. Technol. 2020, 397, 125981. [Google Scholar] [CrossRef]
- Singhal, C.; Murtaza, Q.; Parvej. Simulation of Critical Velocity of Cold Spray Process with Different Turbulence Models. Mater. Today Proc. 2018, 5, 17371–17379. [Google Scholar] [CrossRef]
- Kim, H.-J.; Lee, C.-H.; Hwang, S.-Y. Fabrication of WC-Co coatings by cold spray deposition. Surf. Coat. Technol. 2005, 191, 335–340. [Google Scholar] [CrossRef]
- King, P.C.; Busch, C.; Kittel-Sherri, T.; Jahedi, M.; Gulizia, S. Interface melding in cold spray titanium particle impact. Surf. Coat. Technol. 2014, 239, 191–199. [Google Scholar] [CrossRef]
- Rahmati, S.; Jodoin, B. Physically Based Finite Element Modeling Method to Predict Metallic Bonding in Cold Spray. J. Therm. Spray Technol. 2020, 29, 611–629. [Google Scholar] [CrossRef]
- Fardan, A.; Berndt, C.C.; Ahmed, R. Numerical modelling of particle impact and residual stresses in cold sprayed coatings: A review. Surf. Coat. Technol. 2021, 409, 126835. [Google Scholar] [CrossRef]
- Nastic, A.; Vijay, M.; Tieu, A.; Rahmati, S.; Jodoin, B. Experimental and Numerical Study of the Influence of Substrate Surface Preparation on Adhesion Mechanisms of Aluminum Cold Spray Coatings on 300M Steel Substrates. J. Therm. Spray Technol. 2017, 26, 1461–1483. [Google Scholar] [CrossRef]
- Zhu, L.; Jen, T.-C.; Pan, Y.-T.; Chen, H.-S. Particle Bonding Mechanism in Cold Gas Dynamic Spray: A Three-Dimensional Approach. J. Therm. Spray Technol. 2017, 26, 1859–1873. [Google Scholar] [CrossRef]
Materials | Titanium Alloy | Aluminum Alloy |
---|---|---|
Density (kg/m3) | 4500 | 2770 |
Melting point (K) | 1952 | 933 |
Poisson’s ratio | 0.35 | 0.33 |
Young modulus (MPa) | 74 | 69 |
Specific heat (J/kg·°C) | 612 | 880 |
Thermal conductivity (W/m·°C) | 7.995 | 237 |
Materials | Elements and Compositions (wt.%) | ||||||||
---|---|---|---|---|---|---|---|---|---|
TC4 | Ti | V | Al | C | Fe | O | |||
Bal. | 3.82 | 5.83 | 0.023 | <0.03 | <0.02 | ||||
6061 | Al | Mn | Mg | Zn | Fe | Cu | Cr | Si | Ti |
Bal. | 0.15 | 0.8–1.2 | 0.25 | 0.7 | 0.15–0.4 | 0.04–0.35 | 0.4–0.8 | 0.15 |
Air Pressure (PSI) | Propane Pressure (PSI) | Ar (L/min) | H2 (L/min) | Spray Distance (mm) | Powder Feeding Rate (g/s) | Scan Rate (mm/s) |
---|---|---|---|---|---|---|
85 | 73 | 35 | 25 | 8 | 1500 | 23 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, G.; Zhou, C.; Liu, Y. Critical Velocity Prediction and Characterization of Bonding Types of High-Velocity, Air-Fuel-Sprayed Titanium Coating on Aluminum Alloys. Coatings 2022, 12, 234. https://doi.org/10.3390/coatings12020234
Liang G, Zhou C, Liu Y. Critical Velocity Prediction and Characterization of Bonding Types of High-Velocity, Air-Fuel-Sprayed Titanium Coating on Aluminum Alloys. Coatings. 2022; 12(2):234. https://doi.org/10.3390/coatings12020234
Chicago/Turabian StyleLiang, Guang, Chaoji Zhou, and Yuxiang Liu. 2022. "Critical Velocity Prediction and Characterization of Bonding Types of High-Velocity, Air-Fuel-Sprayed Titanium Coating on Aluminum Alloys" Coatings 12, no. 2: 234. https://doi.org/10.3390/coatings12020234
APA StyleLiang, G., Zhou, C., & Liu, Y. (2022). Critical Velocity Prediction and Characterization of Bonding Types of High-Velocity, Air-Fuel-Sprayed Titanium Coating on Aluminum Alloys. Coatings, 12(2), 234. https://doi.org/10.3390/coatings12020234